Articoli di riviste sul tema "Predictive uncertainty quantification"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Predictive uncertainty quantification".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Cacuci, Dan Gabriel. "Sensitivity Analysis, Uncertainty Quantification and Predictive Modeling of Nuclear Energy Systems." Energies 15, no. 17 (2022): 6379. http://dx.doi.org/10.3390/en15176379.
Testo completoCsillag, Daniel, Lucas Monteiro Paes, Thiago Ramos, et al. "AmnioML: Amniotic Fluid Segmentation and Volume Prediction with Uncertainty Quantification." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 13 (2023): 15494–502. http://dx.doi.org/10.1609/aaai.v37i13.26837.
Testo completoLew, Jiann-Shiun, and Jer-Nan Juang. "Robust Generalized Predictive Control with Uncertainty Quantification." Journal of Guidance, Control, and Dynamics 35, no. 3 (2012): 930–37. http://dx.doi.org/10.2514/1.54510.
Testo completoKarimi, Hamed, and Reza Samavi. "Quantifying Deep Learning Model Uncertainty in Conformal Prediction." Proceedings of the AAAI Symposium Series 1, no. 1 (2023): 142–48. http://dx.doi.org/10.1609/aaaiss.v1i1.27492.
Testo completoAkitaya, Kento, and Masaatsu Aichi. "Land Subsidence Model Inversion with the Estimation of Both Model Parameter Uncertainty and Predictive Uncertainty Using an Evolutionary-Based Data Assimilation (EDA) and Ensemble Model Output Statistics (EMOS)." Water 16, no. 3 (2024): 423. http://dx.doi.org/10.3390/w16030423.
Testo completoSingh, Rishabh, and Jose C. Principe. "Toward a Kernel-Based Uncertainty Decomposition Framework for Data and Models." Neural Computation 33, no. 5 (2021): 1164–98. http://dx.doi.org/10.1162/neco_a_01372.
Testo completoChen, Peng, and Nicholas Zabaras. "Adaptive Locally Weighted Projection Regression Method for Uncertainty Quantification." Communications in Computational Physics 14, no. 4 (2013): 851–78. http://dx.doi.org/10.4208/cicp.060712.281212a.
Testo completoOmagbon, Jericho, John Doherty, Angus Yeh, et al. "Case studies of predictive uncertainty quantification for geothermal models." Geothermics 97 (December 2021): 102263. http://dx.doi.org/10.1016/j.geothermics.2021.102263.
Testo completoNitschke, C. T., P. Cinnella, D. Lucor, and J. C. Chassaing. "Model-form and predictive uncertainty quantification in linear aeroelasticity." Journal of Fluids and Structures 73 (August 2017): 137–61. http://dx.doi.org/10.1016/j.jfluidstructs.2017.05.007.
Testo completoMirzayeva, A., N. A. Slavinskaya, M. Abbasi, J. H. Starcke, W. Li, and M. Frenklach. "Uncertainty Quantification in Chemical Modeling." Eurasian Chemico-Technological Journal 20, no. 1 (2018): 33. http://dx.doi.org/10.18321/ectj706.
Testo completoAlbi, Giacomo, Lorenzo Pareschi, and Mattia Zanella. "Uncertainty Quantification in Control Problems for Flocking Models." Mathematical Problems in Engineering 2015 (2015): 1–14. http://dx.doi.org/10.1155/2015/850124.
Testo completoKumar, Bhargava, Tejaswini Kumar, Swapna Nadakuditi, Hitesh Patel, and Karan Gupta. "Comparing Conformal and Quantile Regression for Uncertainty Quantification: An Empirical Investigation." International Journal of Computing and Engineering 5, no. 5 (2024): 1–8. http://dx.doi.org/10.47941/ijce.1925.
Testo completoGorle, Catherine. "Improving the predictive capability of building simulations using uncertainty quantification." Science and Technology for the Built Environment 28, no. 5 (2022): 575–76. http://dx.doi.org/10.1080/23744731.2022.2079261.
Testo completoDelottier, Hugo, John Doherty, and Philip Brunner. "Data space inversion for efficient uncertainty quantification using an integrated surface and sub-surface hydrologic model." Geoscientific Model Development 16, no. 14 (2023): 4213–31. http://dx.doi.org/10.5194/gmd-16-4213-2023.
Testo completoGerber, Eric A. E., and Bruce A. Craig. "A mixed effects multinomial logistic-normal model for forecasting baseball performance." Journal of Quantitative Analysis in Sports 17, no. 3 (2021): 221–39. http://dx.doi.org/10.1515/jqas-2020-0007.
Testo completoWells, S., A. Plotkowski, J. Coleman, M. Rolchigo, R. Carson, and M. J. M. Krane. "Uncertainty quantification for computational modelling of laser powder bed fusion." IOP Conference Series: Materials Science and Engineering 1281, no. 1 (2023): 012024. http://dx.doi.org/10.1088/1757-899x/1281/1/012024.
Testo completoMa, Junwei, Xiao Liu, Xiaoxu Niu, et al. "Forecasting of Landslide Displacement Using a Probability-Scheme Combination Ensemble Prediction Technique." International Journal of Environmental Research and Public Health 17, no. 13 (2020): 4788. http://dx.doi.org/10.3390/ijerph17134788.
Testo completoFeng, Jinchao, Joshua L. Lansford, Markos A. Katsoulakis, and Dionisios G. Vlachos. "Explainable and trustworthy artificial intelligence for correctable modeling in chemical sciences." Science Advances 6, no. 42 (2020): eabc3204. http://dx.doi.org/10.1126/sciadv.abc3204.
Testo completoBanerjee, Sourav. "Uncertainty Quantification Driven Predictive Multi-Scale Model for Synthesis of Mycotoxins." Computational Biology and Bioinformatics 2, no. 1 (2014): 7. http://dx.doi.org/10.11648/j.cbb.20140201.12.
Testo completoRiley, Matthew E., and Ramana V. Grandhi. "Quantification of model-form and predictive uncertainty for multi-physics simulation." Computers & Structures 89, no. 11-12 (2011): 1206–13. http://dx.doi.org/10.1016/j.compstruc.2010.10.004.
Testo completoZgraggen, Jannik, Gianmarco Pizza, and Lilach Goren Huber. "Uncertainty Informed Anomaly Scores with Deep Learning: Robust Fault Detection with Limited Data." PHM Society European Conference 7, no. 1 (2022): 530–40. http://dx.doi.org/10.36001/phme.2022.v7i1.3342.
Testo completoKefalas, Marios, Bas van Stein, Mitra Baratchi, Asteris Apostolidis, and Thomas Baeck. "End-to-End Pipeline for Uncertainty Quantification and Remaining Useful Life Estimation: An Application on Aircraft Engines." PHM Society European Conference 7, no. 1 (2022): 245–60. http://dx.doi.org/10.36001/phme.2022.v7i1.3317.
Testo completoSætrom, Jon, Joakim Hove, Jan-Arild Skjervheim, and Jon Gustav Vabø. "Improved Uncertainty Quantification in the Ensemble Kalman Filter Using Statistical Model-Selection Techniques." SPE Journal 17, no. 01 (2012): 152–62. http://dx.doi.org/10.2118/145192-pa.
Testo completoOlalusi, Oladimeji B., and Panagiotis Spyridis. "Probabilistic Studies on the Shear Strength of Slender Steel Fiber Reinforced Concrete Structures." Applied Sciences 10, no. 19 (2020): 6955. http://dx.doi.org/10.3390/app10196955.
Testo completoDing, Jing, Yizhuang David Wang, Saqib Gulzar, Youngsoo Richard Kim, and B. Shane Underwood. "Uncertainty Quantification of Simplified Viscoelastic Continuum Damage Fatigue Model using the Bayesian Inference-Based Markov Chain Monte Carlo Method." Transportation Research Record: Journal of the Transportation Research Board 2674, no. 4 (2020): 247–60. http://dx.doi.org/10.1177/0361198120910149.
Testo completoDogulu, N., P. López López, D. P. Solomatine, A. H. Weerts, and D. L. Shrestha. "Estimation of predictive hydrologic uncertainty using quantile regression and UNEEC methods and their comparison on contrasting catchments." Hydrology and Earth System Sciences Discussions 11, no. 9 (2014): 10179–233. http://dx.doi.org/10.5194/hessd-11-10179-2014.
Testo completoKarimanzira, Divas. "Probabilistic Uncertainty Consideration in Regionalization and Prediction of Groundwater Nitrate Concentration." Knowledge 4, no. 4 (2024): 462–80. http://dx.doi.org/10.3390/knowledge4040025.
Testo completoCacuci, Dan G. "TOWARDS OVERCOMING THE CURSE OF DIMENSIONALITY IN PREDICTIVE MODELLING AND UNCERTAINTY QUANTIFICATION." EPJ Web of Conferences 247 (2021): 00002. http://dx.doi.org/10.1051/epjconf/202124700002.
Testo completoCacuci, Dan G. "TOWARDS OVERCOMING THE CURSE OF DIMENSIONALITY IN PREDICTIVE MODELLING AND UNCERTAINTY QUANTIFICATION." EPJ Web of Conferences 247 (2021): 20005. http://dx.doi.org/10.1051/epjconf/202124720005.
Testo completoSlavinskaya, N. A., M. Abbasi, J. H. Starcke, et al. "Development of an Uncertainty Quantification Predictive Chemical Reaction Model for Syngas Combustion." Energy & Fuels 31, no. 3 (2017): 2274–97. http://dx.doi.org/10.1021/acs.energyfuels.6b02319.
Testo completoTran, Vinh Ngoc, and Jongho Kim. "Quantification of predictive uncertainty with a metamodel: toward more efficient hydrologic simulations." Stochastic Environmental Research and Risk Assessment 33, no. 7 (2019): 1453–76. http://dx.doi.org/10.1007/s00477-019-01703-0.
Testo completoWalz, Eva-Maria, Alexander Henzi, Johanna Ziegel, and Tilmann Gneiting. "Easy Uncertainty Quantification (EasyUQ): Generating Predictive Distributions from Single-Valued Model Output." SIAM Review 66, no. 1 (2024): 91–122. http://dx.doi.org/10.1137/22m1541915.
Testo completoHeringhaus, Monika E., Yi Zhang, André Zimmermann, and Lars Mikelsons. "Towards Reliable Parameter Extraction in MEMS Final Module Testing Using Bayesian Inference." Sensors 22, no. 14 (2022): 5408. http://dx.doi.org/10.3390/s22145408.
Testo completoIncorvaia, Gabriele, Darryl Hond, and Hamid Asgari. "Uncertainty Quantification of Machine Learning Model Performance via Anomaly-Based Dataset Dissimilarity Measures." Electronics 13, no. 5 (2024): 939. http://dx.doi.org/10.3390/electronics13050939.
Testo completoMa, Junwei, Xiaoxu Niu, Huiming Tang, Yankun Wang, Tao Wen, and Junrong Zhang. "Displacement Prediction of a Complex Landslide in the Three Gorges Reservoir Area (China) Using a Hybrid Computational Intelligence Approach." Complexity 2020 (January 28, 2020): 1–15. http://dx.doi.org/10.1155/2020/2624547.
Testo completoNamadchian, Ali, Mehdi Ramezani, and Yuanyuan Zou. "Uncertainty quantification of model predictive control for nonlinear systems with parametric uncertainty using hybrid pseudo-spectral method." Cogent Engineering 6, no. 1 (2019): 1691803. http://dx.doi.org/10.1080/23311916.2019.1691803.
Testo completoChen, Ming, Xinhu Zhang, Kechun Shen, and Guang Pan. "Sparse Polynomial Chaos Expansion for Uncertainty Quantification of Composite Cylindrical Shell with Geometrical and Material Uncertainty." Journal of Marine Science and Engineering 10, no. 5 (2022): 670. http://dx.doi.org/10.3390/jmse10050670.
Testo completoShrestha, Durga L., Nagendra Kayastha, Dimitri Solomatine, and Roland Price. "Encapsulation of parametric uncertainty statistics by various predictive machine learning models: MLUE method." Journal of Hydroinformatics 16, no. 1 (2013): 95–113. http://dx.doi.org/10.2166/hydro.2013.242.
Testo completoYe, Yanan, Alvaro Ruiz-Martinez, Peng Wang, and Daniel M. Tartakovsky. "Quantification of Predictive Uncertainty in Models of FtsZ ring assembly in Escherichia coli." Journal of Theoretical Biology 484 (January 2020): 110006. http://dx.doi.org/10.1016/j.jtbi.2019.110006.
Testo completoHasselman, Timothy, and George Lloyd. "A top-down approach to calibration, validation, uncertainty quantification and predictive accuracy assessment." Computer Methods in Applied Mechanics and Engineering 197, no. 29-32 (2008): 2596–606. http://dx.doi.org/10.1016/j.cma.2007.07.031.
Testo completoXie, Shulian, Feng Xue, Weimin Zhang, and Jiawei Zhu. "Data-Driven Predictive Maintenance Policy Based on Dynamic Probability Distribution Prediction of Remaining Useful Life." Machines 11, no. 10 (2023): 923. http://dx.doi.org/10.3390/machines11100923.
Testo completoZhu, Hong-Yu, Gang Wang, Yi Liu, and Ze-Kun Zhou. "Numerical investigation of transonic buffet on supercritical airfoil considering uncertainties in wind tunnel testing." International Journal of Modern Physics B 34, no. 14n16 (2020): 2040083. http://dx.doi.org/10.1142/s0217979220400834.
Testo completoBoso, F., and D. M. Tartakovsky. "Learning on dynamic statistical manifolds." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476, no. 2239 (2020): 20200213. http://dx.doi.org/10.1098/rspa.2020.0213.
Testo completoDogulu, N., P. López López, D. P. Solomatine, A. H. Weerts, and D. L. Shrestha. "Estimation of predictive hydrologic uncertainty using the quantile regression and UNEEC methods and their comparison on contrasting catchments." Hydrology and Earth System Sciences 19, no. 7 (2015): 3181–201. http://dx.doi.org/10.5194/hess-19-3181-2015.
Testo completoPandey, Deep Shankar, and Qi Yu. "Evidential Conditional Neural Processes." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 8 (2023): 9389–97. http://dx.doi.org/10.1609/aaai.v37i8.26125.
Testo completoDavis, Gary A., and Christopher Cheong. "Pedestrian Injury Severity vs. Vehicle Impact Speed: Uncertainty Quantification and Calibration to Local Conditions." Transportation Research Record: Journal of the Transportation Research Board 2673, no. 11 (2019): 583–92. http://dx.doi.org/10.1177/0361198119851747.
Testo completoGupta, Ishank, Deepak Devegowda, Vikram Jayaram, Chandra Rai, and Carl Sondergeld. "Machine learning regressors and their metrics to predict synthetic sonic and mechanical properties." Interpretation 7, no. 3 (2019): SF41—SF55. http://dx.doi.org/10.1190/int-2018-0255.1.
Testo completoGuerra, Gabriel, Fernando A. Rochinha, Renato Elias, et al. "UNCERTAINTY QUANTIFICATION IN COMPUTATIONAL PREDICTIVE MODELS FOR FLUID DYNAMICS USING A WORKFLOW MANAGEMENT ENGINE." International Journal for Uncertainty Quantification 2, no. 1 (2012): 53–71. http://dx.doi.org/10.1615/int.j.uncertaintyquantification.v2.i1.50.
Testo completoPeltz, James J., Dan G. Cacuci, Aurelian F. Badea, and Madalina C. Badea. "Predictive Modeling Applied to a Spent Fuel Dissolver Model—II: Uncertainty Quantification and Reduction." Nuclear Science and Engineering 183, no. 3 (2016): 332–46. http://dx.doi.org/10.13182/nse15-99.
Testo completoKasiviswanathan, K. S., and K. P. Sudheer. "Quantification of the predictive uncertainty of artificial neural network based river flow forecast models." Stochastic Environmental Research and Risk Assessment 27, no. 1 (2012): 137–46. http://dx.doi.org/10.1007/s00477-012-0600-2.
Testo completo