Articoli di riviste sul tema "Predictive uncertainty quantification"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Predictive uncertainty quantification".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Cacuci, Dan Gabriel. "Sensitivity Analysis, Uncertainty Quantification and Predictive Modeling of Nuclear Energy Systems." Energies 15, no. 17 (2022): 6379. http://dx.doi.org/10.3390/en15176379.
Testo completoCsillag, Daniel, Lucas Monteiro Paes, Thiago Ramos, et al. "AmnioML: Amniotic Fluid Segmentation and Volume Prediction with Uncertainty Quantification." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 13 (2023): 15494–502. http://dx.doi.org/10.1609/aaai.v37i13.26837.
Testo completoLew, Jiann-Shiun, and Jer-Nan Juang. "Robust Generalized Predictive Control with Uncertainty Quantification." Journal of Guidance, Control, and Dynamics 35, no. 3 (2012): 930–37. http://dx.doi.org/10.2514/1.54510.
Testo completoKarimi, Hamed, and Reza Samavi. "Quantifying Deep Learning Model Uncertainty in Conformal Prediction." Proceedings of the AAAI Symposium Series 1, no. 1 (2023): 142–48. http://dx.doi.org/10.1609/aaaiss.v1i1.27492.
Testo completoSerenko, I. A., Y. V. Dorn, S. R. Singh, and A. V. Kornaev. "Room for Uncertainty in Remaining Useful Life Estimation for Turbofan Jet Engines." Nelineinaya Dinamika 20, no. 5 (2024): 933–43. https://doi.org/10.20537/nd241218.
Testo completoAkitaya, Kento, and Masaatsu Aichi. "Land Subsidence Model Inversion with the Estimation of Both Model Parameter Uncertainty and Predictive Uncertainty Using an Evolutionary-Based Data Assimilation (EDA) and Ensemble Model Output Statistics (EMOS)." Water 16, no. 3 (2024): 423. http://dx.doi.org/10.3390/w16030423.
Testo completoSriprasert, Soraida, and Patchanok Srisuradetchai. "Multi-K KNN regression with bootstrap aggregation: Accurate predictions and alternative prediction intervals." Edelweiss Applied Science and Technology 9, no. 5 (2025): 2750–64. https://doi.org/10.55214/25768484.v9i5.7589.
Testo completoChala, Ayele Tesema, and Richard Ray. "Uncertainty Quantification in Shear Wave Velocity Predictions: Integrating Explainable Machine Learning and Bayesian Inference." Applied Sciences 15, no. 3 (2025): 1409. https://doi.org/10.3390/app15031409.
Testo completoAyed, Safa Ben, Roozbeh Sadeghian Broujeny, and Rachid Tahar Hamza. "Remaining Useful Life Prediction with Uncertainty Quantification Using Evidential Deep Learning." Journal of Artificial Intelligence and Soft Computing Research 15, no. 1 (2024): 37–55. https://doi.org/10.2478/jaiscr-2025-0003.
Testo completoPlesner, Andreas, Allan P. Engsig-Karup, and Hans True. "Detecting Railway Track Irregularities with Data-driven Uncertainty Quantification." Highlights of Vehicles 3, no. 1 (2025): 1–14. https://doi.org/10.54175/hveh3010001.
Testo completoSingh, Rishabh, and Jose C. Principe. "Toward a Kernel-Based Uncertainty Decomposition Framework for Data and Models." Neural Computation 33, no. 5 (2021): 1164–98. http://dx.doi.org/10.1162/neco_a_01372.
Testo completoDoherty, Conor T., Weile Wang, Hirofumi Hashimoto, and Ian G. Brosnan. "A method for quantifying uncertainty in spatially interpolated meteorological data with application to daily maximum air temperature." Geoscientific Model Development 18, no. 10 (2025): 3003–16. https://doi.org/10.5194/gmd-18-3003-2025.
Testo completoChen, Peng, and Nicholas Zabaras. "Adaptive Locally Weighted Projection Regression Method for Uncertainty Quantification." Communications in Computational Physics 14, no. 4 (2013): 851–78. http://dx.doi.org/10.4208/cicp.060712.281212a.
Testo completoShi, Yuanjie. "Reliable Uncertainty Quantification in Machine Learning via Conformal Prediction." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 28 (2025): 29299–300. https://doi.org/10.1609/aaai.v39i28.35227.
Testo completoFarzana, Walia, Megan A. Witherow, Ahmed Temtam, et al. "24 Key brain region identification in obesity prediction with structural MRI and probabilistic uncertainty aware model." Journal of Clinical and Translational Science 9, s1 (2025): 9. https://doi.org/10.1017/cts.2024.715.
Testo completoOmagbon, Jericho, John Doherty, Angus Yeh, et al. "Case studies of predictive uncertainty quantification for geothermal models." Geothermics 97 (December 2021): 102263. http://dx.doi.org/10.1016/j.geothermics.2021.102263.
Testo completoNitschke, C. T., P. Cinnella, D. Lucor, and J. C. Chassaing. "Model-form and predictive uncertainty quantification in linear aeroelasticity." Journal of Fluids and Structures 73 (August 2017): 137–61. http://dx.doi.org/10.1016/j.jfluidstructs.2017.05.007.
Testo completoMirzayeva, A., N. A. Slavinskaya, M. Abbasi, J. H. Starcke, W. Li, and M. Frenklach. "Uncertainty Quantification in Chemical Modeling." Eurasian Chemico-Technological Journal 20, no. 1 (2018): 33. http://dx.doi.org/10.18321/ectj706.
Testo completoAlbi, Giacomo, Lorenzo Pareschi, and Mattia Zanella. "Uncertainty Quantification in Control Problems for Flocking Models." Mathematical Problems in Engineering 2015 (2015): 1–14. http://dx.doi.org/10.1155/2015/850124.
Testo completoKumar, Bhargava, Tejaswini Kumar, Swapna Nadakuditi, Hitesh Patel, and Karan Gupta. "Comparing Conformal and Quantile Regression for Uncertainty Quantification: An Empirical Investigation." International Journal of Computing and Engineering 5, no. 5 (2024): 1–8. http://dx.doi.org/10.47941/ijce.1925.
Testo completoZhang, Haofeng. "Statistical Methodologies for Decision-Making and Uncertainty Reduction in Machine Learning." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 28 (2025): 29317–18. https://doi.org/10.1609/aaai.v39i28.35236.
Testo completoKayusi, Fredrick, Petros Chavula, Gilbert Lungu, and Hockings Mambwe. "AI-Driven Climate Modeling: Validation and Uncertainty Mapping – Methodologies and Challenges." LatIA 3 (March 25, 2025): 332. https://doi.org/10.62486/latia2025332.
Testo completoGorle, Catherine. "Improving the predictive capability of building simulations using uncertainty quantification." Science and Technology for the Built Environment 28, no. 5 (2022): 575–76. http://dx.doi.org/10.1080/23744731.2022.2079261.
Testo completoGerber, Eric A. E., and Bruce A. Craig. "A mixed effects multinomial logistic-normal model for forecasting baseball performance." Journal of Quantitative Analysis in Sports 17, no. 3 (2021): 221–39. http://dx.doi.org/10.1515/jqas-2020-0007.
Testo completoPortela, Alberto, Julio R. Banga, and Marcos Matabuena. "Conformal prediction for uncertainty quantification in dynamic biological systems." PLOS Computational Biology 21, no. 5 (2025): e1013098. https://doi.org/10.1371/journal.pcbi.1013098.
Testo completoMa, Junwei, Xiao Liu, Xiaoxu Niu, et al. "Forecasting of Landslide Displacement Using a Probability-Scheme Combination Ensemble Prediction Technique." International Journal of Environmental Research and Public Health 17, no. 13 (2020): 4788. http://dx.doi.org/10.3390/ijerph17134788.
Testo completoLidder, Divya, Kathryn Morse, Bridget Sullivan, Wei Qian, Chenglin Miao, and Mengdi Huai. "Neuron Explanations for Conformal Prediction (Student Abstract)." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 28 (2025): 29412–14. https://doi.org/10.1609/aaai.v39i28.35270.
Testo completoFeng, Jinchao, Joshua L. Lansford, Markos A. Katsoulakis, and Dionisios G. Vlachos. "Explainable and trustworthy artificial intelligence for correctable modeling in chemical sciences." Science Advances 6, no. 42 (2020): eabc3204. http://dx.doi.org/10.1126/sciadv.abc3204.
Testo completoZgraggen, Jannik, Gianmarco Pizza, and Lilach Goren Huber. "Uncertainty Informed Anomaly Scores with Deep Learning: Robust Fault Detection with Limited Data." PHM Society European Conference 7, no. 1 (2022): 530–40. http://dx.doi.org/10.36001/phme.2022.v7i1.3342.
Testo completoKefalas, Marios, Bas van Stein, Mitra Baratchi, Asteris Apostolidis, and Thomas Baeck. "End-to-End Pipeline for Uncertainty Quantification and Remaining Useful Life Estimation: An Application on Aircraft Engines." PHM Society European Conference 7, no. 1 (2022): 245–60. http://dx.doi.org/10.36001/phme.2022.v7i1.3317.
Testo completoBanerjee, Sourav. "Uncertainty Quantification Driven Predictive Multi-Scale Model for Synthesis of Mycotoxins." Computational Biology and Bioinformatics 2, no. 1 (2014): 7. http://dx.doi.org/10.11648/j.cbb.20140201.12.
Testo completoRiley, Matthew E., and Ramana V. Grandhi. "Quantification of model-form and predictive uncertainty for multi-physics simulation." Computers & Structures 89, no. 11-12 (2011): 1206–13. http://dx.doi.org/10.1016/j.compstruc.2010.10.004.
Testo completoOlalusi, Oladimeji B., and Panagiotis Spyridis. "Probabilistic Studies on the Shear Strength of Slender Steel Fiber Reinforced Concrete Structures." Applied Sciences 10, no. 19 (2020): 6955. http://dx.doi.org/10.3390/app10196955.
Testo completoFröhlich, Alek, Thiago Ramos, Gustavo Motta Cabello Dos Santos, Isabela Panzeri Carlotti Buzatto, Rafael Izbicki, and Daniel Guimarães Tiezzi. "PersonalizedUS: Interpretable Breast Cancer Risk Assessment with Local Coverage Uncertainty Quantification." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 27 (2025): 27998–8006. https://doi.org/10.1609/aaai.v39i27.35017.
Testo completoSætrom, Jon, Joakim Hove, Jan-Arild Skjervheim, and Jon Gustav Vabø. "Improved Uncertainty Quantification in the Ensemble Kalman Filter Using Statistical Model-Selection Techniques." SPE Journal 17, no. 01 (2012): 152–62. http://dx.doi.org/10.2118/145192-pa.
Testo completoCui, Xinye, Houpu Li, Yanting Yu, Shaofeng Bian, and Guojun Zhai. "A Hybrid Dropout Method for High-Precision Seafloor Topography Reconstruction and Uncertainty Quantification." Applied Sciences 15, no. 11 (2025): 6113. https://doi.org/10.3390/app15116113.
Testo completoDing, Jing, Yizhuang David Wang, Saqib Gulzar, Youngsoo Richard Kim, and B. Shane Underwood. "Uncertainty Quantification of Simplified Viscoelastic Continuum Damage Fatigue Model using the Bayesian Inference-Based Markov Chain Monte Carlo Method." Transportation Research Record: Journal of the Transportation Research Board 2674, no. 4 (2020): 247–60. http://dx.doi.org/10.1177/0361198120910149.
Testo completoDogulu, N., P. López López, D. P. Solomatine, A. H. Weerts, and D. L. Shrestha. "Estimation of predictive hydrologic uncertainty using quantile regression and UNEEC methods and their comparison on contrasting catchments." Hydrology and Earth System Sciences Discussions 11, no. 9 (2014): 10179–233. http://dx.doi.org/10.5194/hessd-11-10179-2014.
Testo completoKarimanzira, Divas. "Probabilistic Uncertainty Consideration in Regionalization and Prediction of Groundwater Nitrate Concentration." Knowledge 4, no. 4 (2024): 462–80. http://dx.doi.org/10.3390/knowledge4040025.
Testo completoHeringhaus, Monika E., Yi Zhang, André Zimmermann, and Lars Mikelsons. "Towards Reliable Parameter Extraction in MEMS Final Module Testing Using Bayesian Inference." Sensors 22, no. 14 (2022): 5408. http://dx.doi.org/10.3390/s22145408.
Testo completoCacuci, Dan G. "TOWARDS OVERCOMING THE CURSE OF DIMENSIONALITY IN PREDICTIVE MODELLING AND UNCERTAINTY QUANTIFICATION." EPJ Web of Conferences 247 (2021): 00002. http://dx.doi.org/10.1051/epjconf/202124700002.
Testo completoCacuci, Dan G. "TOWARDS OVERCOMING THE CURSE OF DIMENSIONALITY IN PREDICTIVE MODELLING AND UNCERTAINTY QUANTIFICATION." EPJ Web of Conferences 247 (2021): 20005. http://dx.doi.org/10.1051/epjconf/202124720005.
Testo completoSlavinskaya, N. A., M. Abbasi, J. H. Starcke, et al. "Development of an Uncertainty Quantification Predictive Chemical Reaction Model for Syngas Combustion." Energy & Fuels 31, no. 3 (2017): 2274–97. http://dx.doi.org/10.1021/acs.energyfuels.6b02319.
Testo completoTran, Vinh Ngoc, and Jongho Kim. "Quantification of predictive uncertainty with a metamodel: toward more efficient hydrologic simulations." Stochastic Environmental Research and Risk Assessment 33, no. 7 (2019): 1453–76. http://dx.doi.org/10.1007/s00477-019-01703-0.
Testo completoWalz, Eva-Maria, Alexander Henzi, Johanna Ziegel, and Tilmann Gneiting. "Easy Uncertainty Quantification (EasyUQ): Generating Predictive Distributions from Single-Valued Model Output." SIAM Review 66, no. 1 (2024): 91–122. http://dx.doi.org/10.1137/22m1541915.
Testo completoDelottier, Hugo, John Doherty, and Philip Brunner. "Data space inversion for efficient uncertainty quantification using an integrated surface and sub-surface hydrologic model." Geoscientific Model Development 16, no. 14 (2023): 4213–31. http://dx.doi.org/10.5194/gmd-16-4213-2023.
Testo completoIncorvaia, Gabriele, Darryl Hond, and Hamid Asgari. "Uncertainty Quantification of Machine Learning Model Performance via Anomaly-Based Dataset Dissimilarity Measures." Electronics 13, no. 5 (2024): 939. http://dx.doi.org/10.3390/electronics13050939.
Testo completoWang, Ziqian. "Research on Stock Price Prediction Model Based on Sentiment Factor and Multi-Core Bagging Algorithm." Highlights in Business, Economics and Management 41 (October 15, 2024): 692–98. http://dx.doi.org/10.54097/hc042q45.
Testo completoLu, Houyu, Amin Farrokhabadi, Ali Rauf, Reza Talemi, Konstantinos Gryllias, and Dimitrios Chronopoulos. "Uncertainty quantification for damage detection in 3D printed auxetic structures based on ultrasonic guided-wave using Flipout probabilistic convolutional neural network." Journal of Physics: Conference Series 2909, no. 1 (2024): 012032. https://doi.org/10.1088/1742-6596/2909/1/012032.
Testo completoNgartera, Lebede, Mahamat Ali Issaka, and Saralees Nadarajah. "Application of Bayesian Neural Networks in Healthcare: Three Case Studies." Machine Learning and Knowledge Extraction 6, no. 4 (2024): 2639–58. http://dx.doi.org/10.3390/make6040127.
Testo completo