Letteratura scientifica selezionata sul tema "PSO (PRATICLE SWARM OPTIMIZATION)"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "PSO (PRATICLE SWARM OPTIMIZATION)".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "PSO (PRATICLE SWARM OPTIMIZATION)"
Aziz, Nor Azlina Ab, Zuwairie Ibrahim, Marizan Mubin, Sophan Wahyudi Nawawi e Nor Hidayati Abdul Aziz. "Transitional Particle Swarm Optimization". International Journal of Electrical and Computer Engineering (IJECE) 7, n. 3 (1 giugno 2017): 1611. http://dx.doi.org/10.11591/ijece.v7i3.pp1611-1619.
Testo completoGolubovic, Ruzica, e Dragan Olcan. "Antenna optimization using Particle Swarm Optimization algorithm". Journal of Automatic Control 16, n. 1 (2006): 21–24. http://dx.doi.org/10.2298/jac0601021g.
Testo completoJiang, Chang Yuan, Shu Guang Zhao, Li Zheng Guo e Chuan Ji. "An Improved Particle Swarm Optimization Algorithm". Applied Mechanics and Materials 195-196 (agosto 2012): 1060–65. http://dx.doi.org/10.4028/www.scientific.net/amm.195-196.1060.
Testo completoShen, Yuanxia, Linna Wei, Chuanhua Zeng e Jian Chen. "Particle Swarm Optimization with Double Learning Patterns". Computational Intelligence and Neuroscience 2016 (2016): 1–19. http://dx.doi.org/10.1155/2016/6510303.
Testo completoXu, Yu Fa, Jie Gao, Guo Chu Chen e Jin Shou Yu. "Quantum Particle Swarm Optimization Algorithm". Applied Mechanics and Materials 63-64 (giugno 2011): 106–10. http://dx.doi.org/10.4028/www.scientific.net/amm.63-64.106.
Testo completoMoraglio, Alberto, Cecilia Di Chio, Julian Togelius e Riccardo Poli. "Geometric Particle Swarm Optimization". Journal of Artificial Evolution and Applications 2008 (21 febbraio 2008): 1–14. http://dx.doi.org/10.1155/2008/143624.
Testo completoZhang, Guan Yu, Xiao Ming Wang, Rui Guo e Guo Qiang Wang. "An Improved Particle Swarm Optimization Algorithm". Applied Mechanics and Materials 394 (settembre 2013): 505–8. http://dx.doi.org/10.4028/www.scientific.net/amm.394.505.
Testo completoHudaib, Amjad A., e Ahmad Kamel AL Hwaitat. "Movement Particle Swarm Optimization Algorithm". Modern Applied Science 12, n. 1 (31 dicembre 2017): 148. http://dx.doi.org/10.5539/mas.v12n1p148.
Testo completoGonsalves, Tad, e Akira Egashira. "Parallel Swarms Oriented Particle Swarm Optimization". Applied Computational Intelligence and Soft Computing 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/756719.
Testo completoMa, Zi Rui. "Particle Swarm Optimization Based on Multiobjective Optimization". Applied Mechanics and Materials 263-266 (dicembre 2012): 2146–49. http://dx.doi.org/10.4028/www.scientific.net/amm.263-266.2146.
Testo completoTesi sul tema "PSO (PRATICLE SWARM OPTIMIZATION)"
SINGH, BHUPINDER. "A HYBRID MSVM COVID-19 IMAGE CLASSIFICATION ENHANCED USING PARTICLE SWARM OPTIMIZATION". Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18864.
Testo completoUrade, Hemlata S., e Rahila Patel. "Performance Evaluation of Dynamic Particle Swarm Optimization". IJCSN, 2012. http://hdl.handle.net/10150/283597.
Testo completoIn this paper the concept of dynamic particle swarm optimization is introduced. The dynamic PSO is different from the existing PSO’s and some local version of PSO in terms of swarm size and topology. Experiment conducted for benchmark functions of single objective optimization problem, which shows the better performance rather the basic PSO. The paper also contains the comparative analysis for Simple PSO and Dynamic PSO which shows the better result for dynamic PSO rather than simple PSO.
Cleghorn, Christopher Wesley. "A Generalized theoretical deterministic particle swarm model". Diss., University of Pretoria, 2013. http://hdl.handle.net/2263/33333.
Testo completoDissertation (MSc)--University of Pretoria, 2013.
gm2014
Computer Science
Unrestricted
Amiri, Mohammad Reza Shams, e Sarmad Rohani. "Automated Camera Placement using Hybrid Particle Swarm Optimization". Thesis, Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3326.
Testo completoSarmad Rohani: 004670606805 Reza Shams: 0046704030897
Brits, Riaan. "Niching strategies for particle swarm optimization". Diss., Pretoria : [s.n.], 2002. http://upetd.up.ac.za/thesis/available/etd-02192004-143003.
Testo completoCleghorn, Christopher Wesley. "Particle swarm optimization : empirical and theoretical stability analysis". Thesis, University of Pretoria, 2017. http://hdl.handle.net/2263/61265.
Testo completoThesis (PhD)--University of Pretoria, 2017.
Computer Science
PhD
Unrestricted
Veselý, Filip. "Aplikace optimalizační metody PSO v podnikatelství". Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2010. http://www.nusl.cz/ntk/nusl-222445.
Testo completoFranz, Wayne. "Multi-population PSO-GA hybrid techniques: integration, topologies, and parallel composition". Springer, 2013. http://hdl.handle.net/1993/23842.
Testo completoLai, Chun-Hau. "Diseño e implementación de algoritmos aproximados de clustering balanceado en PSO". Tesis, Universidad de Chile, 2012. http://www.repositorio.uchile.cl/handle/2250/111954.
Testo completoEste trabajo de tesis está dedicado al diseño e implementación de algoritmos aproximados que permiten explorar las mejores soluciones para el problema de Clustering Balanceado, el cual consiste en dividir un conjunto de n puntos en k clusters tal que cada cluster tenga como m ́ınimo ⌊ n ⌋ puntos, k y éstos deben estar lo más cercano posible al centroide de cada cluster. Estudiamos los algoritmos existentes para este problema y nuestro análisis muestra que éstos podrían fallar en entregar un resultado óptimo por la ausencia de la evaluación de los resultados en cada iteración del algoritmo. Entonces, recurrimos al concepto de Particles Swarms, que fue introducido inicialmente para simular el comportamiento social humano y que permite explorar todas las posibles soluciones de manera que se aproximen a la óptima rápidamente. Proponemos cuatro algoritmos basado en Particle Swarm Optimization (PSO): PSO-Hu ́ngaro, PSO-Gale-Shapley, PSO-Aborci ́on-Punto-Cercano y PSO-Convex-Hull, que aprovechan la característica de la generación aleatoria de los centroides por el algoritmo PSO, para asignar los puntos a estos centroides, logrando una solución más aproximada a la óptima. Evaluamos estos cuatro algoritmos con conjuntos de datos distribuidos en forma uniforme y no uniforme. Se encontró que para los conjuntos de datos distribuidos no uniformemente, es impredecible determinar cuál de los cuatro algoritmos propuestos llegaría a tener un mejor resultado de acuerdo al conjunto de métricas (intra-cluster-distancia, índice Davies-Doublin e índice Dunn). Por eso, nos concentramos con profundidad en el comportamiento de ellos para los conjuntos de datos distribuidos en forma uniforme. Durante el proceso de evaluación se descubrió que la formación de los clusters balanceados de los algoritmos PSO-Absorcion-Puntos-Importantes y PSO-Convex-Hull depende fuertemente del orden con que los centroides comienzan a absorber los puntos más cercanos. En cambio, los algoritmos PSO-Hungaro y PSO-Gale-Shapley solamente dependen de los centroides generados y no del orden de los clusters a crear. Se pudo concluir que el algoritmo PSO-Gale-Shapley presenta el rendimiento menos bueno para la creación de clusters balanceados, mientras que el algoritmo PSO-Hungaro presenta el rendimiento más eficiente para lograr el resultado esperado. Éste último está limitado al tamaño de los datos y la forma de distribución. Se descubrió finalmente que, para los conjuntos de datos de tamaños grandes, independiente de la forma de distribución, el algoritmo PSO-Convex-Hull supera a los demás, entregando mejor resultado según las métricas usadas.
Oldewage, Elre Talea. "The perils of particle swarm optimization in high dimensional problem spaces". Diss., University of Pretoria, 2005. http://hdl.handle.net/2263/66233.
Testo completoDissertation (MSc)--University of Pretoria, 2017.
Computer Science
MSc
Unrestricted
Libri sul tema "PSO (PRATICLE SWARM OPTIMIZATION)"
López, Javier. Optimización multi-objetivo. Editorial de la Universidad Nacional de La Plata (EDULP), 2015. http://dx.doi.org/10.35537/10915/45214.
Testo completoCapitoli di libri sul tema "PSO (PRATICLE SWARM OPTIMIZATION)"
Wang, Feng-Sheng, e Li-Hsunan Chen. "Particle Swarm Optimization (PSO)". In Encyclopedia of Systems Biology, 1649–50. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_416.
Testo completoBadar, Altaf Q. H. "Different Applications of PSO". In Applying Particle Swarm Optimization, 191–208. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70281-6_11.
Testo completoCuevas, Erik, e Alma Rodríguez. "Particle Swarm Optimization (PSO) Algorithm". In Metaheuristic Computation with MATLAB®, 159–81. First edition. | Boca Raton : CRC Press, 2020.: Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9781003006312-6.
Testo completoCouceiro, Micael, e Pedram Ghamisi. "Fractional-Order Darwinian PSO". In Fractional Order Darwinian Particle Swarm Optimization, 11–20. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19635-0_2.
Testo completoEhteram, Mohammad, Akram Seifi e Fatemeh Barzegari Banadkooki. "Structure of Particle Swarm Optimization (PSO)". In Application of Machine Learning Models in Agricultural and Meteorological Sciences, 23–32. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9733-4_2.
Testo completoKao, Yucheng, Ming-Hsien Chen e Kai-Ming Hsieh. "Combining PSO and FCM for Dynamic Fuzzy Clustering Problems". In Swarm Intelligence Based Optimization, 1–8. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12970-9_1.
Testo completoFernández-Brillet, Lucas, Oscar Álvarez e Juan Luis Fernández-Martínez. "The PSO Family: Application to the Portfolio Optimization Problem". In Applying Particle Swarm Optimization, 111–32. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70281-6_7.
Testo completoYarat, Serhat, Sibel Senan e Zeynep Orman. "A Comparative Study on PSO with Other Metaheuristic Methods". In Applying Particle Swarm Optimization, 49–72. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70281-6_4.
Testo completoDeroussi, Laurent. "A Hybrid PSO Applied to the Flexible Job Shop with Transport". In Swarm Intelligence Based Optimization, 115–22. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12970-9_13.
Testo completoGkaidatzis, Paschalis A., Aggelos S. Bouhouras e Dimitris P. Labridis. "Application of PSO in Distribution Power Systems: Operation and Planning Optimization". In Applying Particle Swarm Optimization, 321–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70281-6_17.
Testo completoAtti di convegni sul tema "PSO (PRATICLE SWARM OPTIMIZATION)"
Hu, Jhen-Jai, Yu-Te Su e Tzuu-Hseng S. Li. "A novel ecological-biological-behavior praticle swarm optimization for Ackley's function". In 2010 International Symposium on Computer, Communication, Control and Automation (3CA). IEEE, 2010. http://dx.doi.org/10.1109/3ca.2010.5533436.
Testo completoDas, M. Taylan, L. Canan Dulger e G. Sena Das. "Robotic applications with Particle Swarm Optimization (PSO)". In 2013 International Conference on Control, Decision and Information Technologies (CoDIT). IEEE, 2013. http://dx.doi.org/10.1109/codit.2013.6689537.
Testo completoSchutze, Oliver, El-ghazali Talbi, Gregorio Toscano Pulido, Carlos Coello Coello e Luis Vicente Santana-Quintero. "A Memetic PSO Algorithm for Scalar Optimization Problems". In 2007 IEEE Swarm Intelligence Symposium. IEEE, 2007. http://dx.doi.org/10.1109/sis.2007.368036.
Testo completoVatankhah, Ramin, Shahram Etemadi, Mohammad Honarvar, Aria Alasty, Mehrdad Boroushaki e Gholamreza Vossoughi. "Online velocity optimization of robotic swarm flocking using particle swarm optimization (PSO) method". In 2009 6th International Symposium on Mechatronics and its Applications (ISMA). IEEE, 2009. http://dx.doi.org/10.1109/isma.2009.5164776.
Testo completoPappala, V. S., e I. Erlich. "Power system optimization under uncertainties: A PSO approach". In 2008 IEEE Swarm Intelligence Symposium (SIS). IEEE, 2008. http://dx.doi.org/10.1109/sis.2008.4668276.
Testo completoGies, D., e Y. Rahmat-Samii. "Particle swarm optimization (PSO) for reflector antenna shaping". In IEEE Antennas and Propagation Society Symposium, 2004. IEEE, 2004. http://dx.doi.org/10.1109/aps.2004.1331828.
Testo completoKohler, Manoela, Leonardo Forero, Marley Vellasco, Ricardo Tanscheit e Marco Aurelio Pacheco. "PSO+: A nonlinear constraints-handling particle swarm optimization". In 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2016. http://dx.doi.org/10.1109/cec.2016.7744102.
Testo completoAhmadie, Beryl Labique, Wanda Athira Luqyana, Wayan Firdaus Mahmudy e Rio Arifando. "Milkfish Feed Optimization Using Adaptive Particle Swarm Optimization (PSO) Algorithm". In 2019 International Conference on Sustainable Information Engineering and Technology (SIET). IEEE, 2019. http://dx.doi.org/10.1109/siet48054.2019.8986094.
Testo completoDaneshyari, Moayed, e Gary G. Yen. "Solving constrained optimization using multiple swarm cultural PSO with inter-swarm communication". In 2010 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2010. http://dx.doi.org/10.1109/cec.2010.5586103.
Testo completoWu, Di, e G. Gary Wang. "Enhanced Particle Swarm Optimization via Reinforcement Learning". In ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22519.
Testo completoRapporti di organizzazioni sul tema "PSO (PRATICLE SWARM OPTIMIZATION)"
Styling Parameter Optimization of the Type C Recreational Vehicle Air Drag. SAE International, settembre 2021. http://dx.doi.org/10.4271/2021-01-5094.
Testo completo