Articoli di riviste sul tema "Rad51 filament"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Rad51 filament".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Ma, Emilie, Laurent Maloisel, Léa Le Falher, Raphaël Guérois, and Eric Coïc. "Rad52 Oligomeric N-Terminal Domain Stabilizes Rad51 Nucleoprotein Filaments and Contributes to Their Protection against Srs2." Cells 10, no. 6 (2021): 1467. http://dx.doi.org/10.3390/cells10061467.
Testo completoMaloisel, Laurent, Emilie Ma, Jamie Phipps, et al. "Rad51 filaments assembled in the absence of the complex formed by the Rad51 paralogs Rad55 and Rad57 are outcompeted by translesion DNA polymerases on UV-induced ssDNA gaps." PLOS Genetics 19, no. 2 (2023): e1010639. http://dx.doi.org/10.1371/journal.pgen.1010639.
Testo completoSullivan, Meghan R., and Kara A. Bernstein. "RAD-ical New Insights into RAD51 Regulation." Genes 9, no. 12 (2018): 629. http://dx.doi.org/10.3390/genes9120629.
Testo completoBurgess, Rebecca C., Michael Lisby, Veronika Altmannova, Lumir Krejci, Patrick Sung, and Rodney Rothstein. "Localization of recombination proteins and Srs2 reveals anti-recombinase function in vivo." Journal of Cell Biology 185, no. 6 (2009): 969–81. http://dx.doi.org/10.1083/jcb.200810055.
Testo completoLiu, Jie, Ludovic Renault, Xavier Veaute, Francis Fabre, Henning Stahlberg, and Wolf-Dietrich Heyer. "Rad51 paralogues Rad55–Rad57 balance the antirecombinase Srs2 in Rad51 filament formation." Nature 479, no. 7372 (2011): 245–48. http://dx.doi.org/10.1038/nature10522.
Testo completoOsman, Fekret, Julie Dixon, Alexis R. Barr, and Matthew C. Whitby. "The F-Box DNA Helicase Fbh1 Prevents Rhp51-Dependent Recombination without Mediator Proteins." Molecular and Cellular Biology 25, no. 18 (2005): 8084–96. http://dx.doi.org/10.1128/mcb.25.18.8084-8096.2005.
Testo completoFung, Cindy W., Gary S. Fortin, Shaun E. Peterson, and Lorraine S. Symington. "The rad51-K191R ATPase-Defective Mutant Is Impaired forPresynaptic Filament Formation." Molecular and Cellular Biology 26, no. 24 (2006): 9544–54. http://dx.doi.org/10.1128/mcb.00599-06.
Testo completoLu, Chih-Hao, Hsin-Yi Yeh, Guan-Chin Su, et al. "Swi5–Sfr1 stimulates Rad51 recombinase filament assembly by modulating Rad51 dissociation." Proceedings of the National Academy of Sciences 115, no. 43 (2018): E10059—E10068. http://dx.doi.org/10.1073/pnas.1812753115.
Testo completoMuhammad, Ali Akbar, Clara Basto, Thibaut Peterlini, et al. "Human RAD52 stimulates the RAD51-mediated homology search." Life Science Alliance 7, no. 3 (2023): e202201751. http://dx.doi.org/10.26508/lsa.202201751.
Testo completoSlupianek, Artur, Shuyue Ren, and Tomasz Skorski. "Selective Anti-Leukemia Targeting of the Interaction Between BCR/ABL and Mammalian RecA Homologs." Blood 112, no. 11 (2008): 195. http://dx.doi.org/10.1182/blood.v112.11.195.195.
Testo completoSubramanyam, Shyamal, Mohammed Ismail, Ipshita Bhattacharya, and Maria Spies. "Tyrosine phosphorylation stimulates activity of human RAD51 recombinase through altered nucleoprotein filament dynamics." Proceedings of the National Academy of Sciences 113, no. 41 (2016): E6045—E6054. http://dx.doi.org/10.1073/pnas.1604807113.
Testo completoLi, X., X. P. Zhang, J. A. Solinger, et al. "Rad51 and Rad54 ATPase activities are both required to modulate Rad51-dsDNA filament dynamics." Nucleic Acids Research 35, no. 12 (2007): 4124–40. http://dx.doi.org/10.1093/nar/gkm412.
Testo completoMazina, Olga M., and Alexander V. Mazin. "Human Rad54 Protein Stimulates DNA Strand Exchange Activity of hRad51 Protein in the Presence of Ca2+." Journal of Biological Chemistry 279, no. 50 (2004): 52042–51. http://dx.doi.org/10.1074/jbc.m410244200.
Testo completoZhang, Hongshan, Jeffrey M. Schaub, and Ilya J. Finkelstein. "RADX condenses single-stranded DNA to antagonize RAD51 loading." Nucleic Acids Research 48, no. 14 (2020): 7834–43. http://dx.doi.org/10.1093/nar/gkaa559.
Testo completoGodin, Stephen K., Meghan R. Sullivan, and Kara A. Bernstein. "Novel insights into RAD51 activity and regulation during homologous recombination and DNA replication." Biochemistry and Cell Biology 94, no. 5 (2016): 407–18. http://dx.doi.org/10.1139/bcb-2016-0012.
Testo completoKiianitsa, K., J. A. Solinger, and W. D. Heyer. "Terminal association of Rad54 protein with the Rad51-dsDNA filament." Proceedings of the National Academy of Sciences 103, no. 26 (2006): 9767–72. http://dx.doi.org/10.1073/pnas.0604240103.
Testo completoConway, Adam B., Thomas W. Lynch, Ying Zhang, et al. "Crystal structure of a Rad51 filament." Nature Structural & Molecular Biology 11, no. 8 (2004): 791–96. http://dx.doi.org/10.1038/nsmb795.
Testo completoCash, Kailey, and Maria Spies. "RAD51 filament formation, dynamics, and regulation." Biophysical Journal 122, no. 3 (2023): 355a. http://dx.doi.org/10.1016/j.bpj.2022.11.1968.
Testo completoAdolph, Madison, Swati Balakrishnan, Walter Chazin, and David Cortez. "Abstract IA024: Mechanistic insights into how RADX regulates RAD51 nucleoprotein filaments to maintain genome stability and control replication stress responses." Cancer Research 84, no. 1_Supplement (2024): IA024. http://dx.doi.org/10.1158/1538-7445.dnarepair24-ia024.
Testo completoHerzberg, Kristina, Vladimir I. Bashkirov, Michael Rolfsmeier, et al. "Phosphorylation of Rad55 on Serines 2, 8, and 14 Is Required for Efficient Homologous Recombination in the Recovery of Stalled Replication Forks." Molecular and Cellular Biology 26, no. 22 (2006): 8396–409. http://dx.doi.org/10.1128/mcb.01317-06.
Testo completoLan, Wei-Hsuan, Sheng-Yao Lin, Chih-Yuan Kao, et al. "Rad51 facilitates filament assembly of meiosis-specific Dmc1 recombinase." Proceedings of the National Academy of Sciences 117, no. 21 (2020): 11257–64. http://dx.doi.org/10.1073/pnas.1920368117.
Testo completoFornander, Louise H., Axelle Renodon-Cornière, Naoyuki Kuwabara, et al. "Swi5-Sfr1 protein stimulates Rad51-mediated DNA strand exchange reaction through organization of DNA bases in the presynaptic filament." Nucleic Acids Research 42, no. 4 (2013): 2358–65. http://dx.doi.org/10.1093/nar/gkt1257.
Testo completoMazin, Alexander V., Carole J. Bornarth, Jachen A. Solinger, Wolf-Dietrich Heyer, and Stephen C. Kowalczykowski. "Rad54 Protein Is Targeted to Pairing Loci by the Rad51 Nucleoprotein Filament." Molecular Cell 6, no. 3 (2000): 583–92. http://dx.doi.org/10.1016/s1097-2765(00)00057-5.
Testo completoBonilla, Braulio, Sarah R. Hengel, McKenzie K. Grundy, and Kara A. Bernstein. "RAD51 Gene Family Structure and Function." Annual Review of Genetics 54, no. 1 (2020): 25–46. http://dx.doi.org/10.1146/annurev-genet-021920-092410.
Testo completoColavito, S., M. Macris-Kiss, C. Seong, et al. "Functional significance of the Rad51-Srs2 complex in Rad51 presynaptic filament disruption." Nucleic Acids Research 37, no. 20 (2009): 6754–64. http://dx.doi.org/10.1093/nar/gkp748.
Testo completoOgawa, T., X. Yu, A. Shinohara, and E. Egelman. "Similarity of the yeast RAD51 filament to the bacterial RecA filament." Science 259, no. 5103 (1993): 1896–99. http://dx.doi.org/10.1126/science.8456314.
Testo completoChabot, Thomas, Alain Defontaine, Damien Marquis, et al. "New Phosphorylation Sites of Rad51 by c-Met Modulates Presynaptic Filament Stability." Cancers 11, no. 3 (2019): 413. http://dx.doi.org/10.3390/cancers11030413.
Testo completoJensen, Julia R., and Ryan B. Jensen. "Abstract 5603: Defining the functions of the BRCA2 BRC repeats in modulating RAD51 binding and activity." Cancer Research 84, no. 6_Supplement (2024): 5603. http://dx.doi.org/10.1158/1538-7445.am2024-5603.
Testo completoAlexeev, Andrei, Alexander Mazin, and Stephen C. Kowalczykowski. "Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51–ssDNA nucleoprotein filament." Nature Structural & Molecular Biology 10, no. 3 (2003): 182–86. http://dx.doi.org/10.1038/nsb901.
Testo completoKrejci, Lumir, Stephen Van Komen, Ying Li, et al. "DNA helicase Srs2 disrupts the Rad51 presynaptic filament." Nature 423, no. 6937 (2003): 305–9. http://dx.doi.org/10.1038/nature01577.
Testo completoAmunugama, Ravindra, Yujiong He, Smaranda Willcox, et al. "RAD51 Protein ATP Cap Regulates Nucleoprotein Filament Stability." Journal of Biological Chemistry 287, no. 12 (2012): 8724–36. http://dx.doi.org/10.1074/jbc.m111.239426.
Testo completoMorrison, Ciaran, Akira Shinohara, Eiichiro Sonoda, et al. "The Essential Functions of Human Rad51 Are Independent of ATP Hydrolysis." Molecular and Cellular Biology 19, no. 10 (1999): 6891–97. http://dx.doi.org/10.1128/mcb.19.10.6891.
Testo completoShang, Yongliang, Tao Huang, Hongbin Liu, et al. "MEIOK21: a new component of meiotic recombination bridges required for spermatogenesis." Nucleic Acids Research 48, no. 12 (2020): 6624–39. http://dx.doi.org/10.1093/nar/gkaa406.
Testo completoPeterson, Shaun E., Yinyin Li, Brian T. Chait, Max E. Gottesman, Richard Baer, and Jean Gautier. "Cdk1 uncouples CtIP-dependent resection and Rad51 filament formation during M-phase double-strand break repair." Journal of Cell Biology 194, no. 5 (2011): 705–20. http://dx.doi.org/10.1083/jcb.201103103.
Testo completoTaylor, Martin R. G., Mário Špírek, Chu Jian Ma, et al. "A Polar and Nucleotide-Dependent Mechanism of Action for RAD51 Paralogs in RAD51 Filament Remodeling." Molecular Cell 64, no. 5 (2016): 926–39. http://dx.doi.org/10.1016/j.molcel.2016.10.020.
Testo completoPetiot, Valentine, Charles I. White, and Olivier Da Ines. "DNA-binding site II is required for RAD51 recombinogenic activity inArabidopsis thaliana." Life Science Alliance 7, no. 8 (2024): e202402701. http://dx.doi.org/10.26508/lsa.202402701.
Testo completoJamalruddin, Mohd Azrin, Emmanuel Tawiah, Isabela Contreras, McKenzie Grundy, and Kara Bernstein. "Abstract 1490: RAD51C-deficient cancer cells require DNA polymerase zeta to bypass cisplatin-induced lesion." Cancer Research 85, no. 8_Supplement_1 (2025): 1490. https://doi.org/10.1158/1538-7445.am2025-1490.
Testo completoMartinez, Juan S., Catharina von Nicolai, Taeho Kim, et al. "BRCA2 regulates DMC1-mediated recombination through the BRC repeats." Proceedings of the National Academy of Sciences 113, no. 13 (2016): 3515–20. http://dx.doi.org/10.1073/pnas.1601691113.
Testo completoAdolph, Madison B., Taha M. Mohamed, Swati Balakrishnan, et al. "RADX controls RAD51 filament dynamics to regulate replication fork stability." Molecular Cell 81, no. 5 (2021): 1074–83. http://dx.doi.org/10.1016/j.molcel.2020.12.036.
Testo completoLee, M., J. Lipfert, H. Sanchez, C. Wyman, and N. H. Dekker. "Structural and torsional properties of the RAD51-dsDNA nucleoprotein filament." Nucleic Acids Research 41, no. 14 (2013): 7023–30. http://dx.doi.org/10.1093/nar/gkt425.
Testo completoQiu, Yupeng, Edwin Anthony, Timothy Lohman, and Sua Myong. "Srs2 Prevents Rad51 Filament Formation by Repetitive Scrunching of DNA." Biophysical Journal 104, no. 2 (2013): 75a. http://dx.doi.org/10.1016/j.bpj.2012.11.452.
Testo completoCandelli, Andrea, Jan T. Holhausen, Martin Depken, et al. "RAD51-Nucleoprotein Filament Assembly Quantified at the Single-Molecule Level." Biophysical Journal 104, no. 2 (2013): 369a. http://dx.doi.org/10.1016/j.bpj.2012.11.2049.
Testo completoMa, Chu Jian, Bryan Gibb, YoungHo Kwon, Patrick Sung, and Eric C. Greene. "Protein dynamics of human RPA and RAD51 on ssDNA during assembly and disassembly of the RAD51 filament." Nucleic Acids Research 45, no. 2 (2016): 749–61. http://dx.doi.org/10.1093/nar/gkw1125.
Testo completoGalkin, Vitold E., Yan Wu, Xiao-Ping Zhang, et al. "The Rad51/RadA N-Terminal Domain Activates Nucleoprotein Filament ATPase Activity." Structure 14, no. 6 (2006): 983–92. http://dx.doi.org/10.1016/j.str.2006.04.001.
Testo completoSeong, Changhyun, Sierra Colavito, Youngho Kwon, Patrick Sung, and Lumir Krejci. "Regulation of Rad51 Recombinase Presynaptic Filament Assembly via Interactions with the Rad52 Mediator and the Srs2 Anti-recombinase." Journal of Biological Chemistry 284, no. 36 (2009): 24363–71. http://dx.doi.org/10.1074/jbc.m109.032953.
Testo completoKhade, Nilesh V., and Tomohiko Sugiyama. "Roles of C-Terminal Region of Yeast and Human Rad52 in Rad51-Nucleoprotein Filament Formation and ssDNA Annealing." PLOS ONE 11, no. 6 (2016): e0158436. http://dx.doi.org/10.1371/journal.pone.0158436.
Testo completoSeong, Changhyun, Sierra Colavito, Youngho Kwon, Patrick Sung, and Lumir Krejci. "Regulation of Rad51 recombinase presynaptic filament assembly via interactions with the Rad52 mediator and the Srs2 anti-recombinase." Journal of Biological Chemistry 287, no. 15 (2012): 12154. http://dx.doi.org/10.1074/jbc.a109.032953.
Testo completoNifontova, Galina, Cathy Charlier, Nizar Ayadi, et al. "Photonic Crystal Surface Mode Real-Time Imaging of RAD51 DNA Repair Protein Interaction with the ssDNA Substrate." Biosensors 14, no. 1 (2024): 43. http://dx.doi.org/10.3390/bios14010043.
Testo completoBernstein, Kara A., Robert J. D. Reid, Ivana Sunjevaric, Kimberly Demuth, Rebecca C. Burgess, and Rodney Rothstein. "The Shu complex, which contains Rad51 paralogues, promotes DNA repair through inhibition of the Srs2 anti-recombinase." Molecular Biology of the Cell 22, no. 9 (2011): 1599–607. http://dx.doi.org/10.1091/mbc.e10-08-0691.
Testo completoSlupianek, Artur, Yashodhara Dasgupta, Shu-yue Ren, Kimberly Cramer, and Tomasz Skorski. "Targeting Phosphotyrosine-315 In RAD51 Recombinase to Prevent BCR-ABL1 - Mediated Unfaithful Homeologous Recombination Repair." Blood 116, no. 21 (2010): 1190. http://dx.doi.org/10.1182/blood.v116.21.1190.1190.
Testo completo