Letteratura scientifica selezionata sul tema "Rank of symmetric tensors"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Rank of symmetric tensors".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Rank of symmetric tensors"
Ballico, E. "Gaps in the pairs (border rank, symmetric rank) for symmetric tensors". Sarajevo Journal of Mathematics 9, n. 2 (novembre 2013): 169–81. http://dx.doi.org/10.5644/sjm.09.2.02.
Testo completoComon, Pierre, Gene Golub, Lek-Heng Lim e Bernard Mourrain. "Symmetric Tensors and Symmetric Tensor Rank". SIAM Journal on Matrix Analysis and Applications 30, n. 3 (gennaio 2008): 1254–79. http://dx.doi.org/10.1137/060661569.
Testo completoSEGAL, ARKADY Y. "POINT PARTICLE–SYMMETRIC TENSORS INTERACTION AND GENERALIZED GAUGE PRINCIPLE". International Journal of Modern Physics A 18, n. 27 (30 ottobre 2003): 5021–38. http://dx.doi.org/10.1142/s0217751x03015842.
Testo completoCasarotti, Alex, Alex Massarenti e Massimiliano Mella. "On Comon’s and Strassen’s Conjectures". Mathematics 6, n. 11 (25 ottobre 2018): 217. http://dx.doi.org/10.3390/math6110217.
Testo completoBernardi, Alessandra, Alessandro Gimigliano e Monica Idà. "Computing symmetric rank for symmetric tensors". Journal of Symbolic Computation 46, n. 1 (gennaio 2011): 34–53. http://dx.doi.org/10.1016/j.jsc.2010.08.001.
Testo completoDe Paris, Alessandro. "Seeking for the Maximum Symmetric Rank". Mathematics 6, n. 11 (12 novembre 2018): 247. http://dx.doi.org/10.3390/math6110247.
Testo completoObster, Dennis, e Naoki Sasakura. "Counting Tensor Rank Decompositions". Universe 7, n. 8 (15 agosto 2021): 302. http://dx.doi.org/10.3390/universe7080302.
Testo completoFriedland, Shmuel. "Remarks on the Symmetric Rank of Symmetric Tensors". SIAM Journal on Matrix Analysis and Applications 37, n. 1 (gennaio 2016): 320–37. http://dx.doi.org/10.1137/15m1022653.
Testo completoZhang, Xinzhen, Zheng-Hai Huang e Liqun Qi. "Comon's Conjecture, Rank Decomposition, and Symmetric Rank Decomposition of Symmetric Tensors". SIAM Journal on Matrix Analysis and Applications 37, n. 4 (gennaio 2016): 1719–28. http://dx.doi.org/10.1137/141001470.
Testo completoWen, Jie, Qin Ni e Wenhuan Zhu. "Rank-r decomposition of symmetric tensors". Frontiers of Mathematics in China 12, n. 6 (5 maggio 2017): 1339–55. http://dx.doi.org/10.1007/s11464-017-0632-5.
Testo completoTesi sul tema "Rank of symmetric tensors"
Erdtman, Elias, e Carl Jönsson. "Tensor Rank". Thesis, Linköpings universitet, Matematik och tillämpad matematik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-78449.
Testo completomazzon, andrea. "Hilbert functions and symmetric tensors identifiability". Doctoral thesis, Università di Siena, 2021. http://hdl.handle.net/11365/1133145.
Testo completoWang, Roy Chih Chung. "Adaptive Kernel Functions and Optimization Over a Space of Rank-One Decompositions". Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36975.
Testo completoHarmouch, Jouhayna. "Décomposition de petit rang, problèmes de complétion et applications : décomposition de matrices de Hankel et des tenseurs de rang faible". Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4236/document.
Testo completoWe study the decomposition of a multivariate Hankel matrix as a sum of Hankel matrices of small rank in correlation with the decomposition of its symbol σ as a sum of polynomialexponential series. We present a new algorithm to compute the low rank decomposition of the Hankel operator and the decomposition of its symbol exploiting the properties of the associated Artinian Gorenstein quotient algebra . A basis of is computed from the Singular Value Decomposition of a sub-matrix of the Hankel matrix . The frequencies and the weights are deduced from the generalized eigenvectors of pencils of shifted sub-matrices of Explicit formula for the weights in terms of the eigenvectors avoid us to solve a Vandermonde system. This new method is a multivariate generalization of the so-called Pencil method for solving Pronytype decomposition problems. We analyse its numerical behaviour in the presence of noisy input moments, and describe a rescaling technique which improves the numerical quality of the reconstruction for frequencies of high amplitudes. We also present a new Newton iteration, which converges locally to the closest multivariate Hankel matrix of low rank and show its impact for correcting errors on input moments. We study the decomposition of a multi-symmetric tensor T as a sum of powers of product of linear forms in correlation with the decomposition of its dual as a weighted sum of evaluations. We use the properties of the associated Artinian Gorenstein Algebra to compute the decomposition of its dual which is defined via a formal power series τ. We use the low rank decomposition of the Hankel operator associated to the symbol τ into a sum of indecomposable operators of low rank. A basis of is chosen such that the multiplication by some variables is possible. We compute the sub-coordinates of the evaluation points and their weights using the eigen-structure of multiplication matrices. The new algorithm that we propose works for small rank. We give a theoretical generalized approach of the method in n dimensional space. We show a numerical example of the decomposition of a multi-linear tensor of rank 3 in 3 dimensional space. We show a numerical example of the decomposition of a multi-symmetric tensor of rank 3 in 3 dimensional space. We study the completion problem of the low rank Hankel matrix as a minimization problem. We use the relaxation of it as a minimization problem of the nuclear norm of Hankel matrix. We adapt the SVT algorithm to the case of Hankel matrix and we compute the linear operator which describes the constraints of the problem and its adjoint. We try to show the utility of the decomposition algorithm in some applications such that the LDA model and the ODF model
Savas, Berkant. "Algorithms in data mining using matrix and tensor methods". Doctoral thesis, Linköpings universitet, Beräkningsvetenskap, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11597.
Testo completoSantarsiero, Pierpaola. "Identifiability of small rank tensors and related problems". Doctoral thesis, Università degli studi di Trento, 2022. https://hdl.handle.net/11572/335243.
Testo completoTurner, Kenneth James. "Higher-order filtering for nonlinear systems using symmetric tensors". Thesis, Queensland University of Technology, 1999.
Cerca il testo completoHjelm, Andersson Hampus. "Classification of second order symmetric tensors in the Lorentz metric". Thesis, Linköpings universitet, Matematiska institutionen, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-57197.
Testo completoRovi, Ana. "Analysis of 2 x 2 x 2 Tensors". Thesis, Linköping University, Department of Mathematics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-56762.
Testo completoThe question about how to determine the rank of a tensor has been widely studied in the literature. However the analytical methods to compute the decomposition of tensors have not been so much developed even for low-rank tensors.
In this report we present analytical methods for finding real and complex PARAFAC decompositions of 2 x 2 x 2 tensors before computing the actual rank of the tensor.
These methods are also implemented in MATLAB.
We also consider the question of how best lower-rank approximation gives rise to problems of degeneracy, and give some analytical explanations for these issues.
譚天佑 e Tin-yau Tam. "A study of induced operators on symmetry classes of tensors". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1986. http://hub.hku.hk/bib/B31230738.
Testo completoLibri sul tema "Rank of symmetric tensors"
Baerheim, Reidar. Coordinate free representation of the hierarchically symmetric tensor of rank 4 in determination of symmetry. [Utrecht: Faculteit Aardwetenschappen, Universiteit Utrecht], 1998.
Cerca il testo completoGarcia, Miguel Angel Garrido. Characterization of the Fluctuations in a Symmetric Ensemble of Rank-Based Interacting Particles. [New York, N.Y.?]: [publisher not identified], 2021.
Cerca il testo completoWerner, Müller. L²-index of elliptic operators on manifolds with cusps of rank one. Berlin: Akademie der Wissenschaften der DDR, Karl-Weierstrass-Institut für Mathematik, 1985.
Cerca il testo completoTerras, Audrey. Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and Generalizations. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3408-9.
Testo completoCai, Jianqing. Statistical inference of the eigenspace components of a symmetric random deformation tensor. Munchen: Verlag der Bayerischen Akademie der Wissenschaften in Kommission beim Verlags C.H. Beck, 2004.
Cerca il testo completoTerras, Audrey. Harmonic Analysis on Symmetric Spaces--Higher Rank Spaces, Positive Definite Matrix Space and Generalizations. Springer London, Limited, 2016.
Cerca il testo completoHarmonic Analysis on Symmetric Spaces--Higher Rank Spaces, Positive Definite Matrix Space and Generalizations. Springer New York, 2016.
Cerca il testo completoTerras, Audrey. Harmonic Analysis on Symmetric Spaces―Higher Rank Spaces, Positive Definite Matrix Space and Generalizations. Springer, 2018.
Cerca il testo completoBuchler, Justin. Voter Preferences over Bundles of Roll Call Votes. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190865580.003.0002.
Testo completoLukas, Andre. The Oxford Linear Algebra for Scientists. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780198844914.001.0001.
Testo completoCapitoli di libri sul tema "Rank of symmetric tensors"
Hess, Siegfried. "Symmetric Second Rank Tensors". In Tensors for Physics, 55–74. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12787-3_5.
Testo completoMalgrange, Cécile, Christian Ricolleau e Michel Schlenker. "Second-rank tensors". In Symmetry and Physical Properties of Crystals, 205–23. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8993-6_10.
Testo completoHess, Siegfried. "Symmetry of Second Rank Tensors, Cross Product". In Tensors for Physics, 33–46. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12787-3_3.
Testo completoHarmouch, Jouhayna, Bernard Mourrain e Houssam Khalil. "Decomposition of Low Rank Multi-symmetric Tensor". In Mathematical Aspects of Computer and Information Sciences, 51–66. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-72453-9_4.
Testo completoLiu, Haixia, Lizhang Miao e Yang Wang. "Synchronized Recovery Method for Multi-Rank Symmetric Tensor Decomposition". In Mathematics and Visualization, 241–51. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91274-5_11.
Testo completoKaimakamis, George, e Konstantina Panagiotidou. "The *-Ricci Tensor of Real Hypersurfaces in Symmetric Spaces of Rank One or Two". In Springer Proceedings in Mathematics & Statistics, 199–210. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-55215-4_18.
Testo completoBallet, Stéphane, Jean Chaumine e Julia Pieltant. "Shimura Modular Curves and Asymptotic Symmetric Tensor Rank of Multiplication in any Finite Field". In Algebraic Informatics, 160–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40663-8_16.
Testo completoBocci, Cristiano, e Luca Chiantini. "Symmetric Tensors". In UNITEXT, 105–16. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24624-2_7.
Testo completoTinder, Richard F. "Third- and Fourth-Rank Tensor Properties—Symmetry Considerations". In Tensor Properties of Solids, 95–122. Cham: Springer International Publishing, 2007. http://dx.doi.org/10.1007/978-3-031-79306-6_6.
Testo completoHess, Siegfried. "Summary: Decomposition of Second Rank Tensors". In Tensors for Physics, 75. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12787-3_6.
Testo completoAtti di convegni sul tema "Rank of symmetric tensors"
Merino-Caviedes, Susana, e Marcos Martin-Fernandez. "A general interpolation method for symmetric second-rank tensors in two dimensions". In 2008 5th IEEE International Symposium on Biomedical Imaging (ISBI 2008). IEEE, 2008. http://dx.doi.org/10.1109/isbi.2008.4541150.
Testo completoGaith, Mohamed, e Cevdet Akgoz. "On the Properties of Anisotropic Piezoelectric and Fiber Reinforced Composite Materials". In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14075.
Testo completoMarmin, Arthur, Marc Castella e Jean-Christophe Pesquet. "Detecting the Rank of a Symmetric Tensor". In 2019 27th European Signal Processing Conference (EUSIPCO). IEEE, 2019. http://dx.doi.org/10.23919/eusipco.2019.8902781.
Testo completoKyrgyzov, Olexiy, e Deniz Erdogmus. "Geometric structure of sum-of-rank-1 decompositions for n-dimensional order-p symmetric tensors". In 2008 IEEE International Symposium on Circuits and Systems - ISCAS 2008. IEEE, 2008. http://dx.doi.org/10.1109/iscas.2008.4541674.
Testo completoBarbier, Jean, Clement Luneau e Nicolas Macris. "Mutual Information for Low-Rank Even-Order Symmetric Tensor Factorization". In 2019 IEEE Information Theory Workshop (ITW). IEEE, 2019. http://dx.doi.org/10.1109/itw44776.2019.8989408.
Testo completoChen, Bin, e John Moreland. "Human Brain Diffusion Tensor Imaging Visualization With Virtual Reality". In ASME 2010 World Conference on Innovative Virtual Reality. ASMEDC, 2010. http://dx.doi.org/10.1115/winvr2010-3761.
Testo completoWilson, Daniel W., Elias N. Glytsis, Nile F. Hartman e Thomas K. Gaylord. "Bulk photovoltaic tensor and polarization conversion in LiNbO3". In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.tud8.
Testo completoKiraly, Franz J., e Andreas Ziehe. "Approximate rank-detecting factorization of low-rank tensors". In ICASSP 2013 - 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2013. http://dx.doi.org/10.1109/icassp.2013.6638397.
Testo completoWang, Xiaofei, e Carmeliza Navasca. "Adaptive Low Rank Approximation for Tensors". In 2015 IEEE International Conference on Computer Vision Workshop (ICCVW). IEEE, 2015. http://dx.doi.org/10.1109/iccvw.2015.124.
Testo completoRajbhandari, Samyam, Akshay Nikam, Pai-Wei Lai, Kevin Stock, Sriram Krishnamoorthy e P. Sadayappan. "CAST: Contraction Algorithm for Symmetric Tensors". In 2014 43nd International Conference on Parallel Processing (ICPP). IEEE, 2014. http://dx.doi.org/10.1109/icpp.2014.35.
Testo completoRapporti di organizzazioni sul tema "Rank of symmetric tensors"
Khalfan, H., R. H. Byrd e R. B. Schnabel. A Theoretical and Experimental Study of the Symmetric Rank One Update. Fort Belvoir, VA: Defense Technical Information Center, dicembre 1990. http://dx.doi.org/10.21236/ada233965.
Testo completo