Tesi sul tema "Receiver Operating Characteristic (ROC) Curve"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Receiver Operating Characteristic (ROC) Curve".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Caswell, Benjamin C. "Receiver Operating Characteristic (ROC) Curve Analysis of Affinity Profiles". Diss., CLICK HERE for online access, 2009. http://contentdm.lib.byu.edu/ETD/image/etd3012.pdf.
Testo completoZhang, Zheng. "Semiparametric least squares analysis of the receiver operating characteristic curve /". Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/9578.
Testo completoDodd, Lori Elizabeth. "Regression methods for areas and partial areas under the receiver-operating characteristic curve /". Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/9567.
Testo completoBORGSTROM, MARK CRAIG. "ESTIMATION OF RECEIVER OPERATING CHARACTERISTIC (ROC) CURVE PARAMETERS: SMALL SAMPLE PROPERTIES OF ESTIMATORS". Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/184127.
Testo completoPeng, Hongying. "ROC Curves for Ordinal Biomarkers". University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1543582492604243.
Testo completo池田, 充., Takeo Ishigaki, Mitsuru Ikeda, 一信 山内 e Kazunobu Yamauchi. "Relationship between Brier score and area under the binormal ROC curve". Elsevier, 2002. http://hdl.handle.net/2237/5310.
Testo completoLiu, Hua. "ASYMPTOTIC PROPERTIES OF PARTIAL AREAS UNDER THE RECEIVER OPERATING CHARACTERISTIC CURVE WITH APPLICATIONS IN MICROARRAY EXPERIMENTS". UKnowledge, 2006. http://uknowledge.uky.edu/gradschool_diss/463.
Testo completoStacy, Catherine Ann. "Applying mixed-effects receiver operating characteristic (ROC) curve analysis to diagnostic evaluations of human learning". Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3035981.
Testo completoContini, Letizia. "Identificazione del danno in strutture reticolari via frequenze di vibrare e Receiver Operating Characteristic (ROC) curve". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Cerca il testo completoSun, Fangfang. "Semi-parametric inference for the partial area under the ROC curve". unrestricted, 2008. http://etd.gsu.edu/theses/available/etd-11192008-113213/.
Testo completoTitle from file title page. Gengsheng Qin, committee chair; Yu-Sheng Hsu, Yixin Fang, Yuanhui Xiao, committee members. Description based on contents viewed July 22, 2009. Includes bibliographical references (p. 29-30).
Zhao, Hui. "Discrimination of High Risk and Low Risk Populations for the Treatment of STDs". Digital Archive @ GSU, 2011. http://digitalarchive.gsu.edu/math_theses/104.
Testo completoYoung, Mimy. "Evaluation of Non-Contact Sampling and Detection of Explosives using Receiver Operating Characteristic Curves". FIU Digital Commons, 2013. http://digitalcommons.fiu.edu/etd/994.
Testo completo池田, 充., Mitsuru Ikeda, 茂樹 伊藤, Shigeki Ito, 武男 石垣, Takeo Ishigaki, Kazunobu Yamauchi e 一信 山内. "Evaluation of a neural network classifier for pancreatic masses based on CT findings". Elsevier, 1997. http://hdl.handle.net/2237/5311.
Testo completoKhamesipour, Alireza. "IMPROVED GENE PAIR BIOMARKERS FOR MICROARRAY DATA CLASSIFICATION". OpenSIUC, 2018. https://opensiuc.lib.siu.edu/dissertations/1573.
Testo completoCelidoni, Martina. "Essays on vulnerability to poverty and inequality". Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3422143.
Testo completoAlla luce del recente rapporto della Commissione sulla Misura della Performance Economica e del progresso Sociale (CMEPSP), composta anche da Joseph Stiglitz, Amartya Sen e Jean Paul Fitoussi, gli indicatori statistici sono importanti per il design e la valutazione delle politiche pubbliche in termini di progresso sociale (Stiglitz, Sen, and Fitoussi, 2009). L'obiettivo principale della tesi in oggetto è l'analisi dell'informazione fornita dagli indici di vulnerabilità alla povertà e disuguaglianza. Il primo capitolo confronta in termini empirici le misure individuali di vulnerabilità alla povertà proposte in letteratura. Lo scopo è capire quale sia l'indice più preciso nel predire la povertà, affinchè questo possa essere utilizzato come fonte di informazione per le politiche pubbliche. La Receiver Operating Characteristic (ROC) curve, i coefficenti di correlazione di Pearson e Spearman sono utilizzati come criteri per la valutazione della precisione. Usando dati del British Household Panel Survey (BHPS), del German Socio-Economic Panel (SOEP) e della Survey on Household Income and Wealth (SHIW), i risultati mostrano che possono essere identificate due categorie di indici, high- e low-performers; fra i primi, l'indice proposto da Dutta, Foster, and Mishra (2011) è il più preciso nell'identificare i futuri poveri. Il secondo capitolo applica una scomposizione non parametrica dell'indice di povertà Foster-Greer-Thorbecke alla vulnerabilità alla povertà individuale. Questo approccio mostra come il rischio di povertà può essere espresso come funzione di incidenza attesa, intensità attesa e variabilità negativa attesa. La scomposizione proposta è utile in termini di politiche di risk management per le informazioni circa le caratteristiche del rischio di povertà. Il capitolo prevede due illustrazioni empiriche con dati del British Household Panel Survey e della Survey on Household Income and Wealth. Il terzo capitolo di focalizza sugli indici di disuguaglianza. Secondo Atkinson (1971), la disuguaglianza attribuibile all'età è irrilevante se l'interesse è concentrato nella distribuzione di reddito e ricchezza di lungo periodo (lifetime perspective). Riguardo ciò, il terzo capitolo propone delle misure di disuguaglianza basate sulla ricchezza netta e corrette per l'effetto dei cambiamenti demografici nella popolazione italiana fra il 1991 ed il 2008. Utilizzando i dati della Survey on Household Income and Wealth della Banca d'Italia, i risultati confermano quanto già osservato in letteratura: gli aggiustamenti demografici non risultano determinanti nella dinamica della disuguaglianza in termini di ricchezza netta.
Herath, Dushanthi N. "Nonparametric Estimation of Receiver Operating Characteristic Surfaces Via Bernstein Polynomials". Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc177212/.
Testo completoRen, Peng. "Off-line and On-line Affective Recognition of a Computer User through A Biosignal Processing Approach". FIU Digital Commons, 2013. http://digitalcommons.fiu.edu/etd/838.
Testo completoBlangero, Yoann. "Méthodologie de l’évaluation des biomarqueurs prédictifs quantitatifs et de la détermination d’un seuil pour leur utilisation en médecine personnalisée". Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1125/document.
Testo completoIn France, the cancer research is a major public health issue. The number of new cancer cases nearly doubled between 1980 and 2012. The heterogeneity of the tumor characteristics, for a given cancer, presents a great challenge in the research of new effective treatments. In this context, much hope is placed in the research of predictive (or treatment selection) biomarkers that reflect the patients’ characteristics in order to guide treatment choice. For example, in the metastatic colorectal cancer setting, it is admitted that the addition of cetuximab (an anti-EGFR) to classical chemotherapy (the FOLFOX4), only improve the outcome of patients with KRAS wild-type tumors. In that context, the KRAS gene is a binary treatment selection marker, but plenty of biomarkers result from some quantifications or dosage measurements. The first aim of this thesis is to quantify the global treatment selection ability of a biomarker. After a review of the existing litterature, a method based on an extension of ROC curves is proposed and compared to existing methods. Its main advantage is that it is non-parametric, and that it does not depend on the mean risk of event in each treatment arm. In a second time, when a quantitative treatment selection biomarker is assessed, there is a need to estimate a marker thereshold value above which one treatment is preferred, and below which the other treatment is recommended. An approach that relies on the definition of a utility function is proposed in order to take into account both efficacy and toxicity of treatments when estimating the optimal threshold. A Bayesian method for the estimation of the optimal threshold is proposed
Murnane, Owen D., Faith W. Akin, S. D. Lynn e D. G. Cyr. "“Monothermal caloric screening test performance: A relative operating characteristic (ROC) curve analysis". Digital Commons @ East Tennessee State University, 2009. https://dc.etsu.edu/etsu-works/1893.
Testo completoYu, Daoping. "Early Stopping of a Neural Network via the Receiver Operating Curve". Digital Commons @ East Tennessee State University, 2010. https://dc.etsu.edu/etd/1732.
Testo completoWang, Wen-Chyi. "Regularized variable selection in proportional hazards model using area under receiver operating characteristic curve criterion". College Park, Md.: University of Maryland, 2009. http://hdl.handle.net/1903/9972.
Testo completoThesis research directed by: Dept. of Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Murnane, Owen D., Faith W. Akin, Susan G. Lynn e David G. Cyr. "Monothermal Caloric Screening Test Performance: A Relative Operating Characteristic Curve Analysis". Digital Commons @ East Tennessee State University, 2009. https://dc.etsu.edu/etsu-works/1788.
Testo completoErte, Idil. "Bivariate Random Effects And Hierarchical Meta-analysis Of Summary Receiver Operating Characteristic Curve On Fine Needle Aspiration Cytology". Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613619/index.pdf.
Testo completos accurate usage in publications, 25 FNAC studies have been gathered in the meta-analysis. In the plotting of the summary ROC curve, the logit difference and sums of the true positive rates and the false positive rates included in the meta-analysis&lsquo
s codes have been generated by SAS. The formula of the bivariate random effects model and hierarchical summary ROC curve is presented in context with the literature. Then bivariate random effects implementation with the new SAS PROC GLIMMIX is generated. Moreover, HSROC implementation is generated by SAS PROC HSROC NLMIXED. Curves are plotted with RevMan Version 5 (2008). It has been stated that the meta-analytic results of bivariate random effects are nearly identical to the results from the HSROC approach. The results achieved through both random effects meta-analytic methods prove that FNA Cytology is a diagnostic test with a high level of distinguish over breast tumor.
Brown, Connolly Nancy. "Application of receiver operating characteristic analysis to a remote monitoring model for chronic obstructive pulmonary disease to determine utility and predictive value". Thesis, Brunel University, 2013. http://bura.brunel.ac.uk/handle/2438/8057.
Testo completoXu, Ping. "Evaluation of Repeated Biomarkers: Non-parametric Comparison of Areas under the Receiver Operating Curve Between Correlated Groups Using an Optimal Weighting Scheme". Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4261.
Testo completoEissa, Salah. "Condition monitoring of pharmaceutical powder compression during tabletting using acoustic emission". Thesis, Brunel University, 2003. http://bura.brunel.ac.uk/handle/2438/5244.
Testo completoJirwe, Marcus. "Online Anomaly Detection on the Edge". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299565.
Testo completoDagens samhälle är väldigt beroende av industrin och automatiseringen av fabriksuppgifter är mer förekommande än någonsin. Dock kräver maskinerna som tar sig an dessa uppgifter underhåll för att forsätta arbeta. Detta underhåll ges typiskt periodvis och kan vara dyrt och samtidigt kräva expertkunskap. Därför skulle det vara väldigt fördelaktigt om det kunde förutsägas när en maskin behövde underhåll och endast göra detta när det är nödvändigt. En metod för att förutse när underhåll krävs är att samla in sensordata från en maskin och analysera det för att hitta anomalier. Anomalier fungerar ofta som en indikator av oväntat beteende, och kan därför visa att en maskin behöver underhåll. På grund av frågor som integritet och säkerhet är det ofta inte tillåtet att datan lämnar det lokala systemet. Därför är det nödvändigt att denna typ av anomalidetektering genomförs sekventiellt allt eftersom datan samlas in, och att detta sker på nätverkskanten. Miljön som detta sker i påtvingar begränsningar på både hårdvara och beräkningsförmåga. I denna avhandling så överväger vi fyra anomalidetektorer som med användning av maskininlärning lär sig och upptäcker anomalier i denna sorts miljö. Dessa metoder är LoOP, iForestASD, KitNet och xStream. Vi analyserar först de fyra anomalidetektorerna genom Skoltech Anomaly Benchmark där vi använder deras föreslagna mått samt ”Receiver Operating Characteristic”-kurvor. Vi genomför även vidare analys på två dataset som vi har tillhandhållit av företaget Gebhardt. De experimentella resultaten är lovande och indikerar att de övervägda metoderna presterar väl när det kommer till detektering av anomalier. Slutligen föreslår vi några idéer som kan utforskas för framtida arbete, som att implementera en tröskel för anomalidetektering som anpassar sig dynamiskt.
Cusumano, Carl Joseph. "Assessment of Residual Nonuniformity on Hyperspectral Target Detection Performance". University of Dayton / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1565137429596905.
Testo completoMattout, Jérémie. "Approches statistiques multivariées pour la localisation de l'activation cérébrale en magnétoencéphalographie et en imagerie par résonance magnétique fonctionnelle : vers une fusion d'informations multimodales". Paris 6, 2002. http://www.theses.fr/2002PA066440.
Testo completoPospíšil, Lukáš. "Analýza ROC křivek zvukových signálů a jejich srovnání". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-316445.
Testo completoVerdi, Marcio. "Prediçao de distribuíção de espécies arbustivo-arbóreas no sul do Brasil". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2013. http://hdl.handle.net/10183/115515.
Testo completoIn view of environmental change on a global level, providing ecological information and getting a better understanding of the factors and processes that shape species distribution is an important initiative for planning conservation actions. In this context, the importance and lack of information about the geographical distribution of species motivated us to predict the potential species distribution of shrubs and trees of the family Lauraceae and Myrtaceae, in the Atlantic Forest in southern Brazil. Generalized linear models (GLM) were used to fit predictive models with records of occurrence of 88 species according to environmental variables. Predictor variables were selected based on the lowest corrected Akaike information criterion. We evaluate the performance of the models using the method of cross-validation (10-fold) to calculate the true skill statistic (TSS) and area under the receiver operator characteristic curve (AUC). We used GLM to test the influence of the area of occurrence estimated, the number of records of the species and the complexity of the models on the TSS and AUC. Our results show that climatic variables largely govern the distribution of species, but the variables that capture the local environmental variations are relatively important in the study area. The TSS was significantly influenced by the number of records and complexity of models while the AUC suffered from the effect of all three evaluated factors. The interaction between these factors is an important issue and be considered for new reviews on both measures and with different modeling techniques. Our results also showed that the distributions of some species were overestimated and other corresponded well with the occurrence known to us. Indeed our results have foundations to support new field surveys, assessment of priority areas and conservation plans, and inferences of the effects of environmental change on species of the Atlantic Forest.
Nalavolu, Praveen Reddy. "PERFORMANCE ANALYSIS OF SRCP IMAGE BASED SOUND SOURCE DETECTION ALGORITHMS". UKnowledge, 2010. http://uknowledge.uky.edu/gradschool_theses/50.
Testo completoLETO, BARONE Maria Stefania. "Analysis of a database to predict the result of allergy testing in vivo in patients with chronic nasal symptoms and the development of the software ARSTAT". Doctoral thesis, Università degli Studi di Palermo, 2014. http://hdl.handle.net/10447/91193.
Testo completoHoltmann, Martin, Andreas Becker, Tobias Banaschewski, Aribert Rothenberger e Veit Rößner. "Psychometric Validity of the Strengths and Difficulties Questionnaire-Dysregulation Profile". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-134171.
Testo completoDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Holtmann, Martin, Andreas Becker, Tobias Banaschewski, Aribert Rothenberger e Veit Rößner. "Psychometric Validity of the Strengths and Difficulties Questionnaire-Dysregulation Profile". Karger, 2011. https://tud.qucosa.de/id/qucosa%3A27564.
Testo completoDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Duncan, Andrew Paul. "The analysis and application of artificial neural networks for early warning systems in hydrology and the environment". Thesis, University of Exeter, 2014. http://hdl.handle.net/10871/17569.
Testo completoWang, Yuan. "Heart rate variability and respiration signals as late onset sepsis diagnostic tools in neonatal intensive care units". Thesis, Rennes 1, 2013. http://www.theses.fr/2013REN1S106/document.
Testo completoLate-onset sepsis, defined as a systemic infection in neonates older than 3 days, occurs in approximately 10% of all neonates and in more than 25% of very low birth weight infants who are hospitalized in Neonatal Intensive Care Units (NICU). Recurrent and severe spontaneous apneas and bradycardias (AB) is one of the major clinical early indicators of systemic infection in the premature infant. Various hematological and biochemical markers have been evaluated for this indication but they are invasive procedures that cannot be repeated several times. The objective of this Ph.D dissertation was to determine if heart rate variability (HRV), respiration and the analysis of their relationships help to the diagnosis of infection in premature infants via non-invasive ways in NICU. Therefore, we carried out Mono-Channel (MC) and Bi-Channel (BC) Analysis in two selected groups of premature infants: sepsis (S) vs. non-sepsis (NS). (1) Firstly, we studied the RR series not only by distribution methods (moy, varn, skew, kurt, med, SpAs), by linear methods: time domain (SD, RMSSD) and frequency domain (p_VLF, p_LF, p_HF), but also by non-linear methods: chaos theory (alphaS, alphaF) and information theory (AppEn, SamEn, PermEn, Regul). For each method, we attempt three sizes of window 1024/2048/4096, and then compare these methods in order to find the optimal ways to distinguish S from NS. The results show that alphaS, alphaF and SamEn are optimal parameters to recognize sepsis from the diagnosis of late neonatal infection in premature infants with unusual and recurrent AB. (2) The question about the functional coupling of HRV and nasal respiration is addressed. Linear and non-linear relationships have been explored. Linear indexes were correlation (r²), coherence function (Cohere) and time-frequency index (r2t,f), while a non-linear regression coefficient (h²) was used to analyze non-linear relationships. We calculated two directions during evaluate the index h2 of non-linear regression. Finally, from the entire analysis process, it is obvious that the three indexes (r2tf_rn_raw_0p2_0p4, h2_rn_raw and h2_nr_raw) were complementary ways to diagnosticate sepsis in a non-invasive way, in such delicate patients.(3) Furthermore, feasibility study is carried out on the candidate parameters selected from MC and BC respectively. We discovered that the proposed test based on optimal fusion of 6 features shows good performance with the largest Area Under Curves (AUC) and the least Probability of False Alarm (PFA). As a conclusion, we believe that the selected measures from MC and BC signal analysis have a good repeatability and accuracy to test for the diagnosis of sepsis via non-invasive NICU monitoring system, which can reliably confirm or refute the diagnosis of infection at an early stage
Lemos, Catarina Isabel Ferreira Miranda. "Seleção de genes diferencialmente expressos baseada em metodologia ROC (Receiver Operating Characteristic)". Master's thesis, 2017. http://hdl.handle.net/1822/56110.
Testo completoA análise da expressão genética é essencial para uma identificação da função dos genes e para a identificação destes quando relacionados com doenças. Para a realização de um estudo em larga escala de mudanças na expressão genética é necessário encontrar um método que o faça com precisão e exatidão. Desta forma, foi aqui incluída, uma análise pela tecnologia de microarrays, uma ferramenta importante no diagnóstico de doenças. A execução de um método que identificasse genes com regulação negativa e positiva e genes diferencialmente expressos simultaneamente, tornou-se, a principal motivação deste trabalho. De entre as diferentes técnicas estatísticas, a metodologia ROC (Receiver Operating Characteristic) foi a escolhida para o efeito. Quando se associa a metodologia ROC com a análise de dados de microarrays é possível ver que uma das principais aplicações é a identificação de grupos de genes associados ao desenvolvimento de qualquer patologia cancerígena. Para a análise deste último parâmetro é utilizado o arrow plot com a representação do OVL (Overlapping Coefficient) e da AUC (Area Under the Curve) para cada gene, numa experiência de microarays e comparar a sua eficácia com outros métodos existentes para o mesmo propósito. Através da análise de um conjunto de dados de pacientes afetados pelo adenocarcinoma do pâncreas foi possível identificar os genes diferencialmente expressos, sendo este o principal objetivo do trabalho em questão.
Genetic expression analysis is essential for the identification of gene function and when they are related with diseases. To perform a large-scale study of changes in gene expression it is necessary to find a method to do it with precision and accuracy. Thus, it was included here an analysis by microarray technology, an important tool in the diagnosis of diseases. The execution of a method to identify genes with negative and positive regulation and differentially expressed genes simultaneously has become the main motivation of this work. Among different statistical techniques, the receiver operating characteristic (ROC) was the chosen one. When combining the ROC methodology with microarray data analysis it is possible to see that one of the main applications is the identification of gene groups associated with the development of any kind of cancer. For the analysis of this last parameter is used the arrow plot with the overlapping coefficient (OVL) and the area under the curve (AUC) representation for each gene of a microarray experience and compare its effectiveness with other existing methods for the same purpose. Through the analysis of a set of affected patient data of pancreatic adenocarcinoma it was possible to identify differentially expressed genes, which is the main goal of this work.
He, Yaohua. "Nonparametric methods for receiver operating characteristic (ROC) curve analysis in genomic studies and diagnostic medicine /". 2006. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=442590&T=F.
Testo completoShih, Ai-Ling, e 石艾伶. "An analysis of Receiver Operating Characteristic (ROC) curve on seismo-ionospheric precursors of the TEC in Taiwan". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/96907108150943642907.
Testo completo國立中央大學
太空科學研究所
104
Receiver Operating Characteristic curve (ROC curve) be used to study seismo-ionospheric precursor (SIP) in Taiwan. A median-based method together with the z test is detected the relationship between ionospheric F2-peak plasma frequency foF2 and 50 M≥5.5 earthquakes, local GPS TEC (Total Electron Content) and 50 M≥5.5 earthquakes 1994-1999, and GIM (Global Ionospheric Map) TEC 129 M≥5.5 earthquakes 1999-2014 in Taiwan. First, it is calculated that move 15-day median, upper quartile and lower quartile for create the reference range of upper bound and lower bound. The anomalies are two result that increase (positive) anomaly and decrease (negative) anomaly. In total, z-test is found that 1-4 days and 23-28 days before earthquake are negative anomaly and negative anomaly, respectively. In detail, the results of foF2 show that negative anomaly is in period of 1200-2000 LT 1-3 days before earthquake 1994-1999. However, GPS TEC shows that negative anomaly is in 1400-1600 LT 2-4 days before earthquake 1994-1999, and GIM TEC shows that negative anomaly is in 1800-2200 LT 1-3 days before earthquake 1999-2014. For positive anomaly, foF2 shows that increase in 1300-1500 LT 15-17 days, GPS TEC increase in 1200-1400 LT 24-28 days, and GIM increase in 0900-1400 LT 23-28 days. Further, different reference days (7, 15, and 30 days before and after earthquake) find that 30-days period of positive and negative anomaly. ROC curve shows that SIP is confirmed since the area under the ROC curve is positively associated with the earthquake magnitude. In addition, p-value are approximately zero mean that SIPs are effective in Taiwan.
Lourenço, Alexandra Sofia Costa. "Early warning system aplicado ao setor financeiro português: estudo de caso envolvendo o modelo receiver operating characteristic (ROC) curve". Master's thesis, 2017. http://hdl.handle.net/10071/15199.
Testo completoO presente estudo é realizado com o intuito de dar um modesto contributo aos modelos Early Warning Systems (EWS), uma área em constante desenvolvimento e de crescente interesse. Em concreto, pretende-se analisar os indicadores disponíveis no sector financeiro e macroeconómico nacional, de forma a validar quais os melhores indicadores para prever uma crise financeira em Portugal. Serão analisados dados do sector financeiro e macroeconómico português, com início no 1º trimestre de 1996 e término no 4º trimestre de 2016. A seleção deste horizonte temporal teve como objetivo alcançar o máximo de dados possíveis para uma análise mais fiável. Para colocar em prática esta análise foi selecionado o modelo Receiver Operating Characteristic (ROC) curve, que permite demonstrar a relação existente entre o sinal e o ruído obtidos num teste de diagnóstico, sendo o sinal interpretado como os verdadeiros positivos (sensibilidade) e o ruído como os falsos positivos (especificidade). Através da análise ao índice Area Under Curve (AUC), que varia entre 0 e 1, classificar-se-á a qualidade da curva ROC, sendo mais eficiente quanto mais perto a AUC estiver de 1. Com a análise dos indicadores foi possível concluir que a Taxa de Variação Homóloga (TVH) do Produto Interno Bruto (PIB) (AUC de 0.956), a TVH Consumo Privado (AUC – 0.894), a TVH Deflator PIB (AUC – 0.862), TVH Formação Bruta de Capital Fixo (AUC – 0.862), o Agregado M3 (AUC – 0.859) e a TVH Importações (AUC – 0.828) são bons indicadores na previsão de crises financeiras em Portugal.
The main goal of the present Dissertation is to provide a modest contribution to the development and implementation of Early Warning Systems (EWS) models, an area of constant development and increasing interest. In particular, the Dissertation focuses on analyzing the indicators available in the Portuguese financial and macroeconomic sectors in order to validate which are the best indicators to predict a prospective financial crisis in Portugal. Data from the financial and macroeconomic Portuguese sector will be analyzed, beginning in the 1st quarter of 1996 and finishing in the 4th quarter of 2016. The selection of this large temporal horizon is due to the need to scrutinize as large a dataset as possible for a more reliable analysis. To put this analysis into practice we selected the Receiver Operating Characteristic (ROC) Curve methodology, which links the relationship between the signal and the noise obtained in a diagnostic test. The signal is interpreted as the true positives (sensitivity), while noise is interpreted as false positives (specificity). Through the analysis of the Area Under Curve (AUC) index, ranging from zero (0) to one (1). The quality of the ROC curve will be ranked accordingly, being much more effective when AUC index approaches to one (1). With the analysis of the indicators it is possible to conclude that the Annual Rate of Change (ARC) Gross domestic product (GDP) (AUC – 0.956), ARC Private consumption (AUC – 0.894), ARC GDP Deflator (AUC – 0.862), ARC Gross capital formation fixed (AUC – 0.862), M3 monetary aggregate (AUC – 0.859) and ARC Imports (AUC – 0.828) are good indicators in the forecast of financial crises in Portugal.
Tien, Wan-Ting, e 田婉廷. "Receiver Operating Characteristic Curve Analysis for Cure Survival Data". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/07218155810473806316.
Testo completo國立臺灣大學
數學研究所
102
Benefited from the advanced technology and medical science, more and more effective treatments for different kinds of incurable diseases have been invented. For instance, patients will not die of cancer if the radiation kills all cancer cells, so there are plenty of right-censored data at the end of the observation period. The Kaplan-Meier type estimator of survival curve shows a long and stable plateau in the tail. A characteristic of such survival data is that the survival function does not converge to zero as time goes to infinity. It is called "cure survival data". As a result, using biomarkers to discriminate uncured patients from all subjects becomes an important issue. It is related to the connection between classifications and the true status. Our primary research aim is to extend the application of true positive rate (TPR), false positive rate (FPR), and the area under receiver operating characteristic (ROC) curve (AUC) from classical survival data to cure survival data. And we will analyze the data of an angiography cohort study.
Araújo, Joana Margarida Rodrigues Barros de. "Avaliação do desempenho de indicadores com base na metodologia ROC (Receiver Operating Characteristic)". Master's thesis, 2015. http://hdl.handle.net/1822/38681.
Testo completoO objetivo deste estudo é avaliar e comparar o desempenho de dois indicadores de previsão de risco de mortalidade neonatal para recém-nascidos de muito baixo peso (<1500g), o CRIB (Clinical Risk Index for Babies) e o SNAPPE II (Score for Neonatal Acute Physiology-Perinatal Extension II), com recurso à metodologia ROC (Receiver Operating Characteristic). A execução prática deste estudo foi suportada com auxílio a programas estatísticos próprios para a análise da metodologia ROC, como o SPSS, ROCNPA, Comp2ROC, ROCR e caTools. Os dados que contemplam o presente estudo foram recolhidos pelas unidades de cuidados intensivos neonatais do território português entre 2010 e 2012, e enviados para o Registo Nacional de Recém-Nascidos de Muito Baixo Peso (RNMBP), que é a entidade responsável pelo armazenamento desta informação. Será aferida também a comparação e avaliação de variáveis de elevada expressão na previsão da mortalidade, que compõem os indicadores de mortalidade em estudo, sendo elas, o Peso à Nascença e a Idade Gestacional. A amostra em estudo é composta por 789 recém-nascidos de muito baixo peso, dos quais 51,3% são do género masculino. Em média os recém-nascidos em questão apresentam um peso médio ao nascimento de 1214 g ±343,1 e 29,8 ±2,5 semanas de gestação e, dos integrantes na amostra 11,3% foram declarados óbitos hospitalares. A exatidão dos indicadores de mortalidade e das variáveis foi obtida através do cálculo da AUC, área abaixo da curvaROC,queparaoCRIBfoide0,876±0,025,paraoSNAPPE-IIde0,867±0,026,seguindo-sedasvariáveisidade gestacional e o peso ao nascimento com 0,785 ±0,032 e 0,782 ±0,028, respetivamente. Com base nos resultados obtidos durante a elaboração do presente estudo, o CRIB provou ser melhor em pre dizer a mortalidade para recém-nascidos de muito baixo peso, e tem a seu favor um menor número de variáveis comparativamente ao SNAPPE-II.
The aim of this study is to evaluate and compare the performance of two scores of neonatal mortality risk prediction in very low birth weight infants (<1500g), CRIB (Clinical Risk Index for Babies) and the SNAPPE-II (Score for Neonatal Acute Physiology Perinatal Extension-II), using the ROC (Receiver Operating Characteristic) methodology. The execution of this study was supported with statistical programs for the analysis of ROC methodology, such as SPSS, ROCNPA, Comp2ROC, ROCR and caTools. The dataset used in present work was collected by the neonatal intensive care units of the Portuguese territory between 2010 and 2012, and sent to the Registo Nacional de Recém-Nascidos de Muito Baixo Peso (RNMBP), orga nization responsible by the storage of this information. Itwillbealsoassessthecomparisonandevaluationofhighexpressionvariablesinthemortalityprediction,which are part of the risk mortality scores in question, that are, the Birth Weight and Gestational Age. The dataset consists in 789 very low birth weight infants, of which 51.3% are males. The newborns in study have an average birth weight of 1214 g ±343.1g and an average gestational age of 29.8 ±2.5 weeks, and 11.3% of selected newborns were declared hospital deaths. TheaccuracyoftheriskmortalityscoresandvariableswasobtainedbycalculatingtheareaundertheROCcurve (AUC), for the CRIB was 0.876 ±0.025 and 0.867 SNAPPE-II ±0.026 following gestational age and birth weight with 0.785 ±0.032 and 0.782 ±0.028, respectively. Based on the results obtained during the elaboration of this study, CRIB proved be better to predict mortality in very low birth weight infants, and has a minor number of variables compared to SNAPPE-II.
Chiu, Chih-Heng, e 邱志恆. "Statistical Inferences for the Receiver Operating Characteristic Curve Analysis of An Optimal Marker". Thesis, 2010. http://ndltd.ncl.edu.tw/handle/36807823386788458545.
Testo completoYu, Suizhi. "A covariate-adjusted classification model for multiple biomarkers in disease screening and diagnosis". Diss., 2019. http://hdl.handle.net/2097/39460.
Testo completoDepartment of Statistics
Wei-Wen Hsu
The classification methods based on a linear combination of multiple biomarkers have been widely used to improve the accuracy in disease screening and diagnosis. However, it is seldom to include covariates such as gender and age at diagnosis into these classification procedures. It is known that biomarkers or patient outcomes are often associated with some covariates in practice, therefore the inclusion of covariates may further improve the power of prediction as well as the classification accuracy. In this study, we focus on the classification methods for multiple biomarkers adjusting for covariates. First, we proposed a covariate-adjusted classification model for multiple cross-sectional biomarkers. Technically, it is a two-stage method with a parametric or non-parametric approach to combine biomarkers first, and then incorporating covariates with the use of the maximum rank correlation estimators. Specifically, these parameter coefficients associated with covariates can be estimated by maximizing the area under the receiver operating characteristic (ROC) curve. The asymptotic properties of these estimators in the model are also discussed. An intensive simulation study is conducted to evaluate the performance of this proposed method in finite sample sizes. The data of colorectal cancer and pancreatic cancer are used to illustrate the proposed methodology for multiple cross-sectional biomarkers. We further extend our classification method to longitudinal biomarkers. With the use of a natural cubic spline basis, each subject's longitudinal biomarker profile can be characterized by spline coefficients with a significant reduction in the dimension of data. Specifically, the maximum reduction can be achieved by controlling the number of knots or degrees of freedom in the spline approach, and its coefficients can be obtained by the ordinary least squares method. We consider each spline coefficient as ``biomarker'' in our previous method, then the optimal linear combination of those spline coefficients can be acquired using Stepwise method without any distributional assumption. Afterward, covariates are included by maximizing the corresponding AUC as the second stage. The proposed method is applied to the longitudinal data of Alzheimer's disease and the primary biliary cirrhosis data for illustration. We conduct a simulation study to assess the finite-sample performance of the proposed method for longitudinal biomarkers.
Chang, Ya-Wen, e 張雅玟. "Comparing and correction for the method of estimating three kinds of time-dependent Area under the Receiver Operating Characteristic curve". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/80189855544715340582.
Testo completo國立中央大學
統計研究所
104
In the medical diagnosis, it usually recorded the measurements for covariates of patients with returning to clinic which also called time-dependent covariates. With the property of longitudinal data, it is not suitable for using traditional area under the Receiver Operating Characteristic curve (AUC) to distinguish the biomarkers for predicting ability of diseases. According to the methods in Heagerty & Zheng (2005), van Houwelingen, Putter (2012) and Blanche, Dartigues & Jacqmin-Gadda (2013), all can estimate time-dependent AUC. Since these three kinds of methods are mainly based on the approach in Heagerty & Zheng (2005), each method computes time-dependent AUC by different ways. Hence, we focus on the method in Heagerty & Zheng (2005) and explore AUC for biomarkers via simulation and case study. Due to Heagerty & Zheng (2005) using partial likelihood function to compute AUC that needs complete covariate history and doesn’t allow for measurement error. Consequently, this thesis tries to apply joint model approach to solve the problems of partial likelihood function to obtain a better prediction.
Hossain, Ahmed. "Contribution to Statistical Techniques for Identifying Differentially Expressed Genes in Microarray Data". Thesis, 2011. http://hdl.handle.net/1807/29749.
Testo completoKolísko, Jiří. "Bankruptcy prediction models in the Czech economy: New specification using Bayesian model averaging and logistic regression on the latest data". Master's thesis, 2017. http://www.nusl.cz/ntk/nusl-367716.
Testo completo"Diagnostic Utility of the Culture-Language Interpretive Matrix for the WISC-IV Among Referred Students". Doctoral diss., 2012. http://hdl.handle.net/2286/R.I.15045.
Testo completoDissertation/Thesis
Ph.D. Educational Psychology 2012
Mourão, Maria Filipa Torres Gonçalves Flores. "Aplicação da metodologia ROC na avaliação de desempenho de índices de gravidade clínica em unidades de neonatologia de Portugal". Doctoral thesis, 2015. http://hdl.handle.net/1822/40535.
Testo completoOs cuidados intensivos pediátricos em Portugal são prestados por uma diversidade de Unidades de Cuidados Intensivos interessando neste estudo, em particular, as unidades que prestam cuidados a recém nascidos de muito baixo peso (<1500 g) e/ou com menos de 32 semanas de gestação. Atualmente, são usadas escalas/índices para medir a gravidade clínica de recém-nascidos, sendo as mais utilizadas no território nacional a Clinical Risk Index for Babies (CRIB) e a Score for Neonatal Acute Physiology II (SNAPPE II). Cada unidade procede a uma recolha individualizada dos dados referentes à sua atividade e que são enviados para o Registo Nacional de Recém-Nascidos de Muito Baixo Peso (RNMBP), que é a entidade responsável pelo armazenamento desta informação. Os dados que integram o presente estudo foram recolhidos pelas unidades de cuidados intensivos neonatais do território português (Continente e Ilhas) entre 2010 e 2012, e o objetivo passa pela avaliação e comparação do desempenho desses dois indicadores (CRIB e SNAPPE II), no que respeita à sua capacidade preditiva da mortalidade neonatal, com recurso à metodologia ROC (Receiver Operating Characteristic), quer a nível do território nacional (Continente e Ilhas) quer a nível diferenciado pela Nomenclatura das Unidades Territoriais para fins Estatísticos (NUTS II). Segundo essa Nomenclatura, consideram-se as regiões: Norte (Viana do Castelo, Braga, Porto, Vila Real e Bragança), Centro (Coimbra, Castelo Branco, Leiria, Viseu, Aveiro e Guarda), Lisboa/Vale do Tejo (Lisboa e Setúbal), Alentejo (Évora, Santarém, Beja e Portalegre), Algarve (Faro) e Ilhas (Açores e Madeira). É avaliada também a influência do sexo do recém-nascido e da idade materna, no poder discriminante das duas escalas, como possíveis covariáveis com expressão na previsão da mortalidade. Neste trabalho aplica-se a análise ROC como metodologia base, ajustando-se curvas ROC empíricas, alisadas (por aplicação do estimador de núcleo) e condicionadas a covariáveis, quer pelo método induzido quer aplicando modelos de regressão linear ROC-GLM, tendo sido obtidas as respetivas medidas de precisão (área abaixo da curva ROC e erro padrão). Para a amostra em estudo, quando considerado todo o território nacional, a escala CRIB provou ser melhor a predizer a mortalidade para recém-nascidos de muito baixo peso, e tem a seu favor um menor número de variáveis comparativamente ao SNAPPE II. A comparação entre a capacidade preditiva das duas escalas, quando utilizado o estimador do núcleo para a obtenção das curvas ROC e as correspondentes curvas ROC empíricas, mostram que as últimas apresentam melhor desempenho. A introdução das covariáveis, sexo do recém-nascido e idade materna, no modelo obtido pelo método induzido mostra que nem a escala CRIB nem a escala SNAPPE II, a nível global, apresentam um desempenho diferenciado na previsão da mortalidade (software R). Considerando que uma relação linear existe entre cada uma das escalas e as covariáveis sexo do recém-nascido, idade da mãe e combinando a informação das duas, utilizando o software STATA, verificou-se que a capacidade discriminante e preditiva da escala CRIB é influenciada pela idade da mãe enquanto a da escala SNAPPE II não se altera sob alguma das possibilidades. A combinação das duas covariáveis faz aumentar o poder discriminante dessa escala. Avaliou-se como contribuem as Unidades de Neonatologia que integram os centros hospitalares das regiões classificadas pela Nomenclatura NUTS II, na capacidade discriminante e preditiva das duas escalas. Na região Norte e na região Lisboa/Vale do Tejo a escala CRIB provou ser melhor na previsão da mortalidade. Para as restantes regiões, o desempenho das escalas é idêntico na previsão da mortalidade. Nas UCIN's das Ilhas, a escala CRIB, quando comparada com a SNAPPE II, provou ter um melhor desempenho na avaliação da mortalidade para recém-nascidos do sexo feminino, enquanto que a introdução da idade da mãe provou que, com base nos valores estimados, a CRIB, para recém-nascidos cujas mães têm idade igual ou superior a 35 anos, apresenta um melhor desempenho nas UCIN's da região Norte e do Algarve. A execução prática deste estudo foi suportada com auxílio a programas estatísticos próprios para a análise ROC, como o SPSS, ROCNPA, ROCR e STATA.
Pediatric intensive care in Portugal are provided by a variety of Intensive Care Units. In this study, in particular, the interest lies on units providing care to babies of very low birth weight (<1500 g) and/or less than 32 weeks gestation. Currently, scores/indexes are used to measure the clinical severity of newborns. The most used in Portugal are the Clinical Risk Index for Babies (CRIB) and the Score for Neonatal Acute Physiology II (SNAPPE II). Each unit carries out an individualized collection of data on its activity and that are sent to the National Register of Very Low Birth Weight Newborn (VLBWN), which is responsible for storing this information. The data that are part of the present study were collected by the neonatal intensive care units of the Portuguese territory (mainland and islands) between 2010 and 2012, and the goal involves the evaluation and comparison of the performance of these two indicators (CRIB and SNAPPE II) as regards its predictive ability of neonatal mortality, using the ROC (Receiver Operating Characteristic) methodology. This analysis was performed at the level of mainland Portugal and for the Nomenclature of Territorial Units for Statistics (NUTS II). According to this nomenclature, the regions considered are: Northern (Viana do Castelo, Braga, Porto, Vila Real and Bragança), Center (Coimbra, Castelo Branco, Leiria, Viseu, Aveiro and Guarda), Lisbon/Tejo's Valley (Lisbon and Setúbal), Alentejo (Évora, Santarém, Beja and Portalegre), Algarve (Faro) and Islands (Azores and Madeira). It is also evaluated the influence of the newborn sex and maternal age, on the discriminating power of the two scores as potential covariates with expression in predicting mortality. In this work, the ROC analysis is used as a base methodology, to adjust empirical ROC curves, smoothed ROC curves (using kernel estimator) and for adjusting conditioned ROC curves. For the latest, induced method and models of ROC-GLM regression were applied. For the sample under study, when considering the national territory, the CRIB scale proved better to predict mortality for newborns with very low weight, and has in its favor a smaller number of variables compared to SNAPPE II. Compared the smoothed estimator of the ROC curve with the empirical estimator, the latter shows up more predictive capacity, then better performance. The introduction of covariates (newborn sex and maternal age) when used induced method (software R), shows that neither the CRIB score nor the SNAPPE II, have a differentiated performance in predicting mortality. When a linear relationship between each scale and the covariates is considered (software STATA) it was found that the discriminatory and predictive capacity of the CRIB score is influenced by maternal age while the SNAPPE II scale does not change under any of the possibilities. The combination of the two covariates increases the discriminating power of CRIB score. It was evaluated as contributing the neonatology units that integrate the hospital centers of the regions classified by the nomenclature NUTS II, in discriminant and predictive capacity of the two scales. In North and Lisbon/Tejo's Valley regions the CRIB score proved to be better in predicting mortality. For all other regions, the performance of the two scales in predicting mortality is identical. In the NICU's Islands, the CRIB scale compared with SNAPPE II, proved to perform better in the evaluation of mortality for female newborns; the introduction of the mother's age proved that CRIB score, for newborns whose mothers are aged less than 35 years, presents a better performance in the NICU's of northern and Algarve regions. The practical implementation of this study was supported by statistical programs for ROC analysis, such as SPSS, ROCNPA, ROCR and STATA.