Letteratura scientifica selezionata sul tema "Reinforcement Learning"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Reinforcement Learning".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Reinforcement Learning"

1

Singh, Pranjal, Prasann Sharma, Yash Gupta, and Sampada Massey. "Reinforcement Learning for Portfolio Management." International Journal of Research Publication and Reviews 6, no. 4 (2025): 10374–77. https://doi.org/10.55248/gengpi.6.0425.1599.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Deora, Merin, and Sumit Mathur. "Reinforcement Learning." IJARCCE 6, no. 4 (2017): 178–81. http://dx.doi.org/10.17148/ijarcce.2017.6433.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Barto, Andrew G. "Reinforcement Learning." IFAC Proceedings Volumes 31, no. 29 (1998): 5. http://dx.doi.org/10.1016/s1474-6670(17)38315-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Woergoetter, Florentin, and Bernd Porr. "Reinforcement learning." Scholarpedia 3, no. 3 (2008): 1448. http://dx.doi.org/10.4249/scholarpedia.1448.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Moore, Brett L., Anthony G. Doufas, and Larry D. Pyeatt. "Reinforcement Learning." Anesthesia & Analgesia 112, no. 2 (2011): 360–67. http://dx.doi.org/10.1213/ane.0b013e31820334a7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Likas, Aristidis. "A Reinforcement Learning Approach to Online Clustering." Neural Computation 11, no. 8 (1999): 1915–32. http://dx.doi.org/10.1162/089976699300016025.

Testo completo
Abstract (sommario):
A general technique is proposed for embedding online clustering algorithms based on competitive learning in a reinforcement learning framework. The basic idea is that the clustering system can be viewed as a reinforcement learning system that learns through reinforcements to follow the clustering strategy we wish to implement. In this sense, the reinforcement guided competitive learning (RGCL) algorithm is proposed that constitutes a reinforcement-based adaptation of learning vector quantization (LVQ) with enhanced clustering capabilities. In addition, we suggest extensions of RGCL and LVQ tha
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Mardhatillah, Elsy. "Teacher’s Reinforcement in English Classroom in MTSS Darul Makmur Sungai Cubadak." Indonesian Research Journal On Education 3, no. 1 (2022): 825–32. http://dx.doi.org/10.31004/irje.v3i1.202.

Testo completo
Abstract (sommario):
This research was due to some problems found in MTsS Darul Makmur. First, some students were not motivated in learning. Second, sometime the teacher still uses Indonesian in giving reinforcements. Third, some Students did not care about the teacher's reinforcement. This study aimed to find out the types of reinforcement used by the teacher. Then, to find out the types of reinforcement often and rarely to be usedby the teacher. Then, to find out the reasons the teacher used certain reinforcements. Last, to find out how the teacher understands the reinforcement. This research used a qualitative
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Liaq, Mudassar, and Yungcheol Byun. "Autonomous UAV Navigation Using Reinforcement Learning." International Journal of Machine Learning and Computing 9, no. 6 (2019): 756–61. http://dx.doi.org/10.18178/ijmlc.2019.9.6.869.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Alrammal, Muath, and Munir Naveed. "Monte-Carlo Based Reinforcement Learning (MCRL)." International Journal of Machine Learning and Computing 10, no. 2 (2020): 227–32. http://dx.doi.org/10.18178/ijmlc.2020.10.2.924.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Nurmuhammet, Abdullayev. "DEEP REINFORCEMENT LEARNING ON STOCK DATA." Alatoo Academic Studies 23, no. 2 (2023): 505–18. http://dx.doi.org/10.17015/aas.2023.232.49.

Testo completo
Abstract (sommario):
This study proposes using Deep Reinforcement Learning (DRL) for stock trading decisions and prediction. DRL is a machine learning technique that enables agents to learn optimal strategies by interacting with their environment. The proposed model surpasses traditional models and can make informed trading decisions in real-time. The study highlights the feasibility of applying DRL in financial markets and its advantages in strategic decision- making. The model's ability to learn from market dynamics makes it a promising approach for stock market forecasting. Overall, this paper provides valuable
Gli stili APA, Harvard, Vancouver, ISO e altri
Più fonti

Tesi sul tema "Reinforcement Learning"

1

Izquierdo, Ayala Pablo. "Learning comparison: Reinforcement Learning vs Inverse Reinforcement Learning : How well does inverse reinforcement learning perform in simple markov decision processes in comparison to reinforcement learning?" Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259371.

Testo completo
Abstract (sommario):
This research project elaborates a qualitative comparison between two different learning approaches, Reinforcement Learning (RL) and Inverse Reinforcement Learning (IRL) over the Gridworld Markov Decision Process. The interest focus will be set on the second learning paradigm, IRL, as it is considered to be relatively new and little work has been developed in this field of study. As observed, RL outperforms IRL, obtaining a correct solution in all the different scenarios studied. However, the behaviour of the IRL algorithms can be improved and this will be shown and analyzed as part of the sco
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Seymour, B. J. "Aversive reinforcement learning." Thesis, University College London (University of London), 2010. http://discovery.ucl.ac.uk/800107/.

Testo completo
Abstract (sommario):
We hypothesise that human aversive learning can be described algorithmically by Reinforcement Learning models. Our first experiment uses a second-order conditioning design to study sequential outcome prediction. We show that aversive prediction errors are expressed robustly in the ventral striatum, supporting the validity of temporal difference algorithms (as in reward learning), and suggesting a putative critical area for appetitive-aversive interactions. With this in mind, the second experiment explores the nature of pain relief, which as expounded in theories of motivational opponency, is r
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Akrour, Riad. "Robust Preference Learning-based Reinforcement Learning." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112236/document.

Testo completo
Abstract (sommario):
Les contributions de la thèse sont centrées sur la prise de décisions séquentielles et plus spécialement sur l'Apprentissage par Renforcement (AR). Prenant sa source de l'apprentissage statistique au même titre que l'apprentissage supervisé et non-supervisé, l'AR a gagné en popularité ces deux dernières décennies en raisons de percées aussi bien applicatives que théoriques. L'AR suppose que l'agent (apprenant) ainsi que son environnement suivent un processus de décision stochastique Markovien sur un espace d'états et d'actions. Le processus est dit de décision parce que l'agent est appelé à ch
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Tabell, Johnsson Marco, and Ala Jafar. "Efficiency Comparison Between Curriculum Reinforcement Learning & Reinforcement Learning Using ML-Agents." Thesis, Blekinge Tekniska Högskola, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-20218.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Yang, Zhaoyuan Yang. "Adversarial Reinforcement Learning for Control System Design: A Deep Reinforcement Learning Approach." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu152411491981452.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Cortesi, Daniele. "Reinforcement Learning in Rogue." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16138/.

Testo completo
Abstract (sommario):
In this work we use Reinforcement Learning to play the famous Rogue, a dungeon-crawler videogame father of the rogue-like genre. By employing different algorithms we substantially improve on the results obtained in previous work, addressing and solving the problems that were arisen. We then devise and perform new experiments to test the limits of our own solution and encounter additional and unexpected issues in the process. In one of the investigated scenario we clearly see that our approach is not yet enough to even perform better than a random agent and propose ideas for future works.
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Girgin, Sertan. "Abstraction In Reinforcement Learning." Phd thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608257/index.pdf.

Testo completo
Abstract (sommario):
Reinforcement learning is the problem faced by an agent that must learn behavior through trial-and-error interactions with a dynamic environment. Generally, the problem to be solved contains subtasks that repeat at different regions of the state space. Without any guidance an agent has to learn the solutions of all subtask instances independently, which degrades the learning performance. In this thesis, we propose two approaches to build connections between different regions of the search space leading to better utilization of gained experience and accelerate learning is proposed. In the fir
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Suay, Halit Bener. "Reinforcement Learning from Demonstration." Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-dissertations/173.

Testo completo
Abstract (sommario):
Off-the-shelf Reinforcement Learning (RL) algorithms suffer from slow learning performance, partly because they are expected to learn a task from scratch merely through an agent's own experience. In this thesis, we show that learning from scratch is a limiting factor for the learning performance, and that when prior knowledge is available RL agents can learn a task faster. We evaluate relevant previous work and our own algorithms in various experiments. Our first contribution is the first implementation and evaluation of an existing interactive RL algorithm in a real-world domain with a human
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Gao, Yang. "Argumentation accelerated reinforcement learning." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/26603.

Testo completo
Abstract (sommario):
Reinforcement Learning (RL) is a popular statistical Artificial Intelligence (AI) technique for building autonomous agents, but it suffers from the curse of dimensionality: the computational requirement for obtaining the optimal policies grows exponentially with the size of the state space. Integrating heuristics into RL has proven to be an effective approach to combat this curse, but deriving high-quality heuristics from people's (typically conflicting) domain knowledge is challenging, yet it received little research attention. Argumentation theory is a logic-based AI technique well-known for
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Alexander, John W. "Transfer in reinforcement learning." Thesis, University of Aberdeen, 2015. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=227908.

Testo completo
Abstract (sommario):
The problem of developing skill repertoires autonomously in robotics and artificial intelligence is becoming ever more pressing. Currently, the issues of how to apply prior knowledge to new situations and which knowledge to apply have not been sufficiently studied. We present a transfer setting where a reinforcement learning agent faces multiple problem solving tasks drawn from an unknown generative process, where each task has similar dynamics. The task dynamics are changed by varying in the transition function between states. The tasks are presented sequentially with the latest task presente
Gli stili APA, Harvard, Vancouver, ISO e altri
Più fonti

Libri sul tema "Reinforcement Learning"

1

Sutton, Richard S. Reinforcement Learning. Springer US, 1992.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Wiering, Marco, and Martijn van Otterlo, eds. Reinforcement Learning. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27645-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Sutton, Richard S., ed. Reinforcement Learning. Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3618-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Lorenz, Uwe. Reinforcement Learning. Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-61651-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Nandy, Abhishek, and Manisha Biswas. Reinforcement Learning. Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3285-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

S, Sutton Richard, ed. Reinforcement learning. Kluwer Academic Publishers, 1992.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Lorenz, Uwe. Reinforcement Learning. Springer Berlin Heidelberg, 2024. http://dx.doi.org/10.1007/978-3-662-68311-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Li, Jinna, Frank L. Lewis, and Jialu Fan. Reinforcement Learning. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28394-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Xiao, Zhiqing. Reinforcement Learning. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-19-4933-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Merrick, Kathryn, and Mary Lou Maher. Motivated Reinforcement Learning. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89187-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Più fonti

Capitoli di libri sul tema "Reinforcement Learning"

1

Sutton, Richard S. "Introduction: The Challenge of Reinforcement Learning." In Reinforcement Learning. Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3618-5_1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Williams, Ronald J. "Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning." In Reinforcement Learning. Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3618-5_2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Tesauro, Gerald. "Practical Issues in Temporal Difference Learning." In Reinforcement Learning. Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3618-5_3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Watkins, Christopher J. C. H., and Peter Dayan. "Technical Note." In Reinforcement Learning. Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3618-5_4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Lin, Long-Ji. "Self-Improving Reactive Agents Based on Reinforcement Learning, Planning and Teaching." In Reinforcement Learning. Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3618-5_5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Singh, Satinder Pal. "Transfer of Learning by Composing Solutions of Elemental Sequential Tasks." In Reinforcement Learning. Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3618-5_6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Dayan, Peter. "The Convergence of TD(λ) for General λ." In Reinforcement Learning. Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3618-5_7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Millán, José R., and Carme Torras. "A Reinforcement Connectionist Approach to Robot Path Finding in Non-Maze-Like Environments." In Reinforcement Learning. Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3618-5_8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Lorenz, Uwe. "Bestärkendes Lernen als Teilgebiet des Maschinellen Lernens." In Reinforcement Learning. Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-61651-2_1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Lorenz, Uwe. "Grundbegriffe des Bestärkenden Lernens." In Reinforcement Learning. Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-61651-2_2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "Reinforcement Learning"

1

Kruse, Georg, Rodrigo Coelho, Andreas Rosskopf, Robert Wille, and Jeanette-Miriam Lorenz. "Benchmarking Quantum Reinforcement Learning." In Workshop on Quantum Artificial Intelligence and Optimization 2025. SCITEPRESS - Science and Technology Publications, 2025. https://doi.org/10.5220/0013393200003890.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Toonen, Kelvin, and Thiago Simão. "Making Reinforcement Learning Safer via Curriculum Learning." In 17th International Conference on Agents and Artificial Intelligence. SCITEPRESS - Science and Technology Publications, 2025. https://doi.org/10.5220/0013388100003890.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Yang, Kun, Chengshuai Shi, and Cong Shen. "Teaching Reinforcement Learning Agents via Reinforcement Learning." In 2023 57th Annual Conference on Information Sciences and Systems (CISS). IEEE, 2023. http://dx.doi.org/10.1109/ciss56502.2023.10089695.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Doshi, Finale, Joelle Pineau, and Nicholas Roy. "Reinforcement learning with limited reinforcement." In the 25th international conference. ACM Press, 2008. http://dx.doi.org/10.1145/1390156.1390189.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Li, Zhiyi. "Reinforcement Learning." In SIGCSE '19: The 50th ACM Technical Symposium on Computer Science Education. ACM, 2019. http://dx.doi.org/10.1145/3287324.3293703.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Shen, Shitian, and Min Chi. "Reinforcement Learning." In UMAP '16: User Modeling, Adaptation and Personalization Conference. ACM, 2016. http://dx.doi.org/10.1145/2930238.2930247.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Kuroe, Yasuaki, and Kenya Takeuchi. "Sophisticated Swarm Reinforcement Learning by Incorporating Inverse Reinforcement Learning." In 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2023. http://dx.doi.org/10.1109/smc53992.2023.10394525.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Lyu, Le, Yang Shen, and Sicheng Zhang. "The Advance of Reinforcement Learning and Deep Reinforcement Learning." In 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA). IEEE, 2022. http://dx.doi.org/10.1109/eebda53927.2022.9744760.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Epshteyn, Arkady, Adam Vogel, and Gerald DeJong. "Active reinforcement learning." In the 25th international conference. ACM Press, 2008. http://dx.doi.org/10.1145/1390156.1390194.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Epshteyn, Arkady, and Gerald DeJong. "Qualitative reinforcement learning." In the 23rd international conference. ACM Press, 2006. http://dx.doi.org/10.1145/1143844.1143883.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Rapporti di organizzazioni sul tema "Reinforcement Learning"

1

Singh, Satinder, Andrew G. Barto, and Nuttapong Chentanez. Intrinsically Motivated Reinforcement Learning. Defense Technical Information Center, 2005. http://dx.doi.org/10.21236/ada440280.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Ghavamzadeh, Mohammad, and Sridhar Mahadevan. Hierarchical Multiagent Reinforcement Learning. Defense Technical Information Center, 2004. http://dx.doi.org/10.21236/ada440418.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Harmon, Mance E., and Stephanie S. Harmon. Reinforcement Learning: A Tutorial. Defense Technical Information Center, 1997. http://dx.doi.org/10.21236/ada323194.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Tadepalli, Prasad, and Alan Fern. Partial Planning Reinforcement Learning. Defense Technical Information Center, 2012. http://dx.doi.org/10.21236/ada574717.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Ghavamzadeh, Mohammad, and Sridhar Mahadevan. Hierarchical Average Reward Reinforcement Learning. Defense Technical Information Center, 2003. http://dx.doi.org/10.21236/ada445728.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Johnson, Daniel W. Drive-Reinforcement Learning System Applications. Defense Technical Information Center, 1992. http://dx.doi.org/10.21236/ada264514.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Cleland, Andrew. Bounding Box Improvement With Reinforcement Learning. Portland State University Library, 2000. http://dx.doi.org/10.15760/etd.6322.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Li, Jiajie. Learning Financial Investment Strategies using Reinforcement Learning and 'Chan theory'. Iowa State University, 2022. http://dx.doi.org/10.31274/cc-20240624-946.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Baird, III, Klopf Leemon C., and A. H. Reinforcement Learning With High-Dimensional, Continuous Actions. Defense Technical Information Center, 1993. http://dx.doi.org/10.21236/ada280844.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Obert, James, and Angie Shia. Optimizing Dynamic Timing Analysis with Reinforcement Learning. Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1573933.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!