Letteratura scientifica selezionata sul tema "Rift Valley fever virus (RVFV)"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Rift Valley fever virus (RVFV)".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Rift Valley fever virus (RVFV)"
Soi, Reuben K., Fred R. Rurangirwa, Travis C. McGuire, Paul M. Rwambo, James C. DeMartini e Timothy B. Crawford. "Protection of Sheep against Rift Valley Fever Virus and Sheep Poxvirus with a Recombinant Capripoxvirus Vaccine". Clinical and Vaccine Immunology 17, n. 12 (dicembre 2010): 1842–49. http://dx.doi.org/10.1128/cvi.00220-10.
Testo completoShiell, Brian J., Siying Ye, Jennifer A. Harper, Brenda van der Heide, Gary Beddome, Adam J. Foord, Wojtek P. Michalski, John Bingham e Grantley R. Peck. "Reagents for detection of Rift Valley fever virus infection in sheep". Journal of Veterinary Diagnostic Investigation 32, n. 4 (25 maggio 2020): 577–80. http://dx.doi.org/10.1177/1040638720926476.
Testo completoAyari-Fakhfakh, Emna, Tânia Zaverucha do Valle, Laurent Guillemot, Jean-Jacques Panthier, Michèle Bouloy, Abdeljelil Ghram, Emmanuel Albina e Catherine Cêtre-Sossah. "MBT/Pas mouse: a relevant model for the evaluation of Rift Valley fever vaccines". Journal of General Virology 93, n. 7 (1 luglio 2012): 1456–64. http://dx.doi.org/10.1099/vir.0.042754-0.
Testo completoBingham, John, e Petrus Jansen van Vuren. "Rift Valley fever: a review". Microbiology Australia 41, n. 1 (2020): 28. http://dx.doi.org/10.1071/ma20008.
Testo completoLancelot, Renaud, Marina Béral, Vincent Michel Rakotoharinome, Soa-Fy Andriamandimby, Jean-Michel Héraud, Caroline Coste, Andrea Apolloni et al. "Drivers of Rift Valley fever epidemics in Madagascar". Proceedings of the National Academy of Sciences 114, n. 5 (17 gennaio 2017): 938–43. http://dx.doi.org/10.1073/pnas.1607948114.
Testo completoKwaśnik, Małgorzata, Wojciech Rożek e Jerzy Rola. "Rift Valley fever – a growing threat to humans and animals". Journal of Veterinary Research 65, n. 1 (26 gennaio 2021): 7–14. http://dx.doi.org/10.2478/jvetres-2021-0009.
Testo completoYang, Ze Xiao, Bo Wang, Qiu Mei Xu, Xue Ping Yao, Ling Zhu, Zhi Wen Xu, Kai Yu Wang, Gui Li Li, Shan Zhen Peng e Yin Wang. "Design and Evaluation of the Primers for Rift Valley Fever (RVF) Virus RT-PCR Detection". Advanced Materials Research 989-994 (luglio 2014): 1115–19. http://dx.doi.org/10.4028/www.scientific.net/amr.989-994.1115.
Testo completoCosseddu, Gian Mario, Kudakwashe Magwedere, Umberto Molini, Chiara Pinoni, Sigfried Khaiseb, Massimo Scacchia, Maurilia Marcacci et al. "Genetic Diversity of Rift Valley Fever Strains Circulating in Namibia in 2010 and 2011". Viruses 12, n. 12 (16 dicembre 2020): 1453. http://dx.doi.org/10.3390/v12121453.
Testo completoTerasaki, Kaori, e Shinji Makino. "Interplay between the Virus and Host in Rift Valley Fever Pathogenesis". Journal of Innate Immunity 7, n. 5 (2015): 450–58. http://dx.doi.org/10.1159/000373924.
Testo completoHEISE, M. T., A. WHITMORE, J. THOMPSON, M. PARSONS, A. A. GROBBELAAR, A. KEMP, J. T. PAWESKA et al. "An alphavirus replicon-derived candidate vaccine against Rift Valley fever virus". Epidemiology and Infection 137, n. 9 (27 gennaio 2009): 1309–18. http://dx.doi.org/10.1017/s0950268808001696.
Testo completoTesi sul tema "Rift Valley fever virus (RVFV)"
Teka, Girma. "NaCl, Heparin, and Heparan Sulphate Affects Binding of Rift Valley Fever Virus to Human Cells". Thesis, Umeå universitet, Biomedicinsk laboratorievetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-58534.
Testo completoOdendaal, Lieza. "Sensitivity and specificity of rRT-PCR, histopathology, and immunohistochemistry for the detection of rift valley fever virus in naturally-infected cattle and sheep". Diss., University of Pretoria, 2014. http://hdl.handle.net/2263/40707.
Testo completoDissertation (MSc)--University of Pretoria, 2014.
gm2014
Paraclinical Sciences
unrestricted
Lumley, Sarah. "Survival strategies of Rift Valley fever virus". Thesis, University of Surrey, 2018. http://epubs.surrey.ac.uk/847025/.
Testo completoBaudin, Maria. "Rift Valley fever : consequences of virus-host interactions". Doctoral thesis, Umeå universitet, Virologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-126602.
Testo completoNäslund, Jonas. "Rift Valley fever development of diagnostics and vaccines /". Umeå : Department of Clinical Microbiology, Umeå university, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-30676.
Testo completoLang, Yuekun. "Identification and evaluation of antivirals for Rift Valley fever virus". Diss., Kansas State University, 2017. http://hdl.handle.net/2097/38195.
Testo completoDepartment of Diagnostic Medicine/Pathobiology
Wenjun Ma
Rift Valley fever virus (RVFV) is an enveloped, negative-sense, ssRNA virus with a tripartite genome that causes morbidity and mortality in both livestock and humans. Although RVFV is mainly circulating in mainland Africa, this arthropod-borne virus is a potential threat to the other parts of the world. No fully licensed vaccines for human or animal use in the U.S., and effective antiviral drugs have not been identified. As virulent RVFV strains are only handled in biosafety level (BSL) 3 or higher level facilities in the U.S., few laboratories have access to RVFV which limits antiviral development. However, it is crucial to develop effective antivirals to protect public and animal health. Animal models that reproduce Rift Valley fever are vital to identifying and developing antiviral compounds. The currently available attenuated RVFV strain, MP12, provides a BSL-2 challenge model virus for preliminary investigations of RVFV prior to using the virulent RVFV strains. All strains of RVFV have a highly conserved genome, indicating that antivirals or vaccines effective against any RVFV strain will most likely be effective for all RVFV strains. Therefore, we hypothesize that the MP12 is a suitable model virus that can be used for identification and evaluation of effective RVF antivirals. The first objective of this project was to establish a mouse model susceptible to MP12 infection. Based on the literature, we selected and screened six different strains of mice to test their susceptibilities to MP12. We found the STAT-1 knockout mice are the most susceptible to MP12 infection based on clinical symptoms, mortality, viremia, virus replication, histopathological, and immunochemical analyses. Importantly, these mice displayed acute-onset hepatitis and delayed-onset encephalitis similar to severe cases of human RVFV infection. Our second objective was to identify potential antiviral drugs in vitro. We developed and employed a cell-based assay using the recombinant MP12 virus expressing Renilla luciferase to screen a library of 727 small compounds purchased from National Institutes of Health. Of the compounds, 23 were identified and further tested for their inhibitory activities on the recombinant MP12 virus expressing green fluorescent protein. Further plaque reduction assays confirmed that two compounds inhibited replication of parental RVFV MP12 strain with limited cytotoxic effects. The 50% inhibitory concentrations using an MP12 multiplicity of infection (MOI) of 2 were 211.4 µM and 139.5 µM, respectively. Our third objective was to evaluate these two candidates, 6-azauridine and mitoxantrone, in vivo using our mouse model. After one-hour post MP12 infection via an intranasal route, treatment was given intranasally twice daily. Mice treated with placebo and 6-azauridine displayed severe weight loss and reached the threshold for euthanasia with obvious neurological signs, while mice treated with ribavirin (a known antiviral drug) or mitoxantrone showed delayed onset of disease. This result indicates that the mitoxantrone can improve the outcome of RVFV infection in our mouse model. The underlying mechanism of mitoxantrone to inhibit RVFV replication remains to be investigated. Our studies build the foundation for identification and development of antivirals against RVFV in a BSL-2 environment.
Chun, Elizabeth M. "Developing a Recombinant Plant Virus Nanoparticle Vaccine for Rift Valley Fever Virus". Scholarship @ Claremont, 2019. https://scholarship.claremont.edu/scripps_theses/1345.
Testo completoNúñez, García Ana Isabel. "Influence of mosquito-virus interaction on Zika virus and Rift Valley fever phlebovirus transmission". Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670697.
Testo completoLas enfermedades transmitidas por vectores representan un alto porcentaje de las enfermedades infecciosas en el mundo. Concretamente, las enfermedades causadas por arbovirus (arthropod-borne viruses), que circulan en la naturaleza entre artrópodos (sus vectores), y los hospedadores vertebrados (sus reservorios), pueden causar enfermedades graves en los hospedadores vertebrados, pero no causan una patología significativa en los vectores. Durante décadas las enfermedades causadas por arbovirus fueron olvidadas, ya que en su gran mayoría estaban localizadas en zonas en vías de desarrollo. En la actualidad, factores ambientales, ecológicos y socioeconómicos, como el cambio climático y la globalización, han contribuido a la emergencia y reemergencia de las enfermedades arbovirales. El constante movimiento de personas y mercancías ha dado lugar a la colonización y establecimiento de especies de exóticas en nuestro país, como el mosquito tigre (Aedes albopictus), el cual es transmisor de muchos arbovirus (e.g. el virus del dengue, el virus Zika (ZIKV) o el virus chikungunya). El desarrollo de esta tesis se centró en realizar estudios de competencia vectorial para el ZIKV y en un estudio del transcriptoma de Culex pipiens después de ser expuesto al phlebovirus de la fiebre del Valle del Rift (RVFV) para comprender las interacciones el virus y los mosquitos locales. Los capítulos I y II se focalizaron en estimar la competencia vectorial para ZIKV de diferentes especies de mosquitos de campo presentes en nuestro país: Aedes albopictus, Aedes caspius y Culex pipiens. Además, se desarrollaron experimentos de transmisión vertical para determinar si la generación de mosquitos provenientes de hembras infectadas con el ZIKV es capaz de diseminarlo. Durante el desarrollo de estos estudios, se ha demostrado que los mosquitos locales de la especie Ae. albopictus son vectores competentes para el ZIKV. Sin embargo, las especies Cx. pipiens y Ae. caspius son refractarias para este arbovirus. Con respecto al experimento de transmisión vertical, se demostró que la progenie de las hembras inoculadas con el virus de forma intratorácica fue susceptible a la infección del virus, pero no fueron capaces de diseminarlo. Por otro lado, el capítulo III se centró en el estudio de las interacciones a nivel molecular entre la especie de mosquito Cx. pipiens y RVFV, con el objetivo caracterizar las alteraciones a nivel molecular de la expresión de los genes correspondientes al sistema inmune del mosquito durante la infección por RVFV mediante un análisis del transcriptoma de novo. Como resultado, se obtuvieron 48 genes diferencialmente expresados en los mosquitos ante la presencia del virus que servir de diana para controlar la infección, ya sea para desequilibrar la tolerancia de los mosquitos al virus como para inhibir la infección en los mosquitos. Los resultados obtenidos del estudio de las alteraciones del transcriptoma de mosquitos de la especie Cx. pipiens expuestos a RVFV sientan las bases para la realización de futuros estudios funcionales de los genes involucrados en controlar/permitir la infección por RVFV. En conjunto, el desarrollo de esta tesis incrementa el conocimiento para mejorar el diseño de estrategias eficientes para la vigilancia de vectores transmisores del ZIKV y del RVFV.
Vector-borne diseases represent a 17 % of infectious diseases in the world. Among them, those diseases caused by arboviruses (arthropod-borne viruses), which circulate in the nature between arthropods (their vectors) and vertebrate hosts (their reservoirs), are currently provoking serious diseases in humans and animals. For decades, the arboviral diseases were neglected, since most of them were located in developing areas. Nowadays, environmental, ecological and socioeconomic factors (e.g., globalization and climate change) have contributed to the emergence and re-emergence of arboviral diseases. The constant movement of people and merchandise has allowed the colonization and establishment of exotic mosquito species in our country such as the tiger mosquito (Aedes albopictus), which is a potential vector of many arboviruses (e.g., dengue virus, Zika virus or chikungunya virus). This thesis focused on conducting vector competence and transmission studies in local mosquito species for Zika virus (ZIKV) and on the study of the Culex pipiens transcriptome alteration after being exposed to the Rift Valley fever phlebovirus (RVFV) in order to better understand how virus-vector interaction influences on ZIKV and RVFV transmission. Chapters I and II focused on estimating the vector competence for ZIKV of different field-collected mosquito species present in our country: Aedes albopictus, Aedes caspius and Culex pipiens. In addition, vertical transmission studies were performed to determine if the progeny of females infected with ZIKV were able to disseminate the virus. The results of these studies showed that local populations of Ae. albopictus were competent vectors for ZIKV and Cx. pipiens and Ae. caspius species were refractory for this arbovirus. Moreover, it was demonstrated that ZIKV was able to be transmitted to the progeny but the later could not disseminate the virus. Chapter III focused on the study of interactions between the Cx. pipiens mosquito species and RVFV at molecular level, with the aim to characterize the alterations in the expression of the mosquito genes related to the immune system during RVFV infection by analyzing de novo transcriptome. As a result, 48 immune differentially expressed genes in mosquitoes exposed to RVFV were altered, which could serve as potential targets to control the infection, either by unbalancing the mosquito tolerance to RVFV or by inhibiting the infection in mosquitoes. The results obtained on the Cx. pipiens transcriptome alterations due to exposure to RVFV pave the way for future functional studies about genes involved in the control/tolerance of RVFV infection. Overall, this thesis increased the knowledge to better design efficient strategies for ZIKV and RVFV surveillance and control.
LaBeaud, Angelle Desiree. "New Understanding of the Epidemiology of Rift Valley Fever Virus in Kenya". Case Western Reserve University School of Graduate Studies / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1237579750.
Testo completoMendenhall, Michelle. "Punta Toro Virus Infection in Mice: Strain Differences in Pathogenesis and Regulation of Interferon Response Pathways". DigitalCommons@USU, 2009. https://digitalcommons.usu.edu/etd/425.
Testo completoLibri sul tema "Rift Valley fever virus (RVFV)"
Swanepoel, R., e J. T. Paweska. Rift Valley fever. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780198570028.003.0043.
Testo completoGould, E. A. Mosquito-borne arboviruses. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780198570028.003.0039.
Testo completoCapitoli di libri sul tema "Rift Valley fever virus (RVFV)"
Gogovi, Gideon K. "Structural Exploration of Rift Valley Fever Virus L Protein Domain in Implicit and Explicit Solvents by Molecular Dynamics". In Advances in Computer Vision and Computational Biology, 759–74. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71051-4_59.
Testo completoLindahl, Johanna, Bernard Bett, Timothy Robinson e Delia Grace. "Rift Valley Fever and the Changing Environment". In Environmental and Agricultural Informatics, 1496–516. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-5225-9621-9.ch068.
Testo completoLindahl, Johanna, Bernard Bett, Timothy Robinson e Delia Grace. "Rift Valley Fever and the Changing Environment". In Examining the Role of Environmental Change on Emerging Infectious Diseases and Pandemics, 178–204. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0553-2.ch008.
Testo completoWOOD, O. L., J. M. MEEGAN, J. C. MORRILL e E. H. STEPHENSON. "Rift Valley Fever Virus". In Virus Infections of Ruminants, 481–94. Elsevier, 1990. http://dx.doi.org/10.1016/b978-0-444-87312-5.50064-3.
Testo completo"Rift Valley Fever Virus". In Molecular Detection of Human Viral Pathogens, 707–18. CRC Press, 2016. http://dx.doi.org/10.1201/b13590-66.
Testo completoWilson, William, Natasha Gaudreault e Mohammad Hossain. "Rift Valley Fever Virus". In Molecular Detection of Animal Viral Pathogens, 553–61. CRC Press, 2016. http://dx.doi.org/10.1201/b19719-66.
Testo completo"Rift Valley Fever Virus". In Molecular Detection of Animal Viral Pathogens, 581–90. CRC Press, 2016. http://dx.doi.org/10.1201/b19719-70.
Testo completoPaweska, Janusz T., e Petrus Jansen van Vuren. "Rift Valley Fever Virus". In The Role of Animals in Emerging Viral Diseases, 169–200. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-405191-1.00008-9.
Testo completoGrandadam, Marc. "Rift Valley Fever Virus". In Manual of Security Sensitive Microbes and Toxins, 201–14. CRC Press, 2014. http://dx.doi.org/10.1201/b16752-20.
Testo completo"- Rift Valley Fever Virus and Hemorrhagic Fever". In Viral Hemorrhagic Fevers, 400–425. CRC Press, 2016. http://dx.doi.org/10.1201/b15172-26.
Testo completoAtti di convegni sul tema "Rift Valley fever virus (RVFV)"
Turell, Michael J. "Factors affecting the ability of mosquitoes to transmit Rift Valley fever virus". In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.95074.
Testo completoZagrajek, Adrian K. "Factors affecting the ability ofCulex pipiensmosquitoes to transmit Rift Valley fever virus". In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.114402.
Testo completoLi, Guili, Yin Wang, Xueping Yao e Ling Hu. "Establishment of a duplex RT-PCR assay for simultaneous detection of Rift valley fever virus and peste des petits ruminants virus". In 2015 International Conference on Materials, Environmental and Biological Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/mebe-15.2015.92.
Testo completoRapporti di organizzazioni sul tema "Rift Valley fever virus (RVFV)"
Romoser, William S. Studies of Infection and Dissemination of Rift Valley Fever Virus in Mosquitoes. Fort Belvoir, VA: Defense Technical Information Center, maggio 1990. http://dx.doi.org/10.21236/ada225496.
Testo completoWeilhammer, D. R. Investigating the role of innate immunity in viral encephalitis caused by Rift Valley fever virus. Office of Scientific and Technical Information (OSTI), ottobre 2019. http://dx.doi.org/10.2172/1573140.
Testo completoLinthicum, K. J., C. L. Bailey, C. J. Tucker, K. D. Mitchell e T. M. Logan. Application of Polar-Orbiting, Meteorological Satellite Data to Detect Flooding of Rift Valley Fever Virus Vector Mosquito Habitats in Kenya. Fort Belvoir, VA: Defense Technical Information Center, gennaio 1990. http://dx.doi.org/10.21236/ada233281.
Testo completoJaing, C., e S. Gardner. Interim Report on SNP analysis and forensic microarray probe design for South American hemorrhagic fever viruses, tick-borne encephalitis virus, henipaviruses, Old World Arenaviruses, filoviruses, Crimean-Congo hemorrhagic fever viruses, Rift Valley fever. Office of Scientific and Technical Information (OSTI), giugno 2012. http://dx.doi.org/10.2172/1044237.
Testo completo