Letteratura scientifica selezionata sul tema "RL ALGORITHMS"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "RL ALGORITHMS".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "RL ALGORITHMS"
Lahande, Prathamesh, Parag Kaveri e Jatinderkumar Saini. "Reinforcement Learning for Reducing the Interruptions and Increasing Fault Tolerance in the Cloud Environment". Informatics 10, n. 3 (2 agosto 2023): 64. http://dx.doi.org/10.3390/informatics10030064.
Testo completoTrella, Anna L., Kelly W. Zhang, Inbal Nahum-Shani, Vivek Shetty, Finale Doshi-Velez e Susan A. Murphy. "Designing Reinforcement Learning Algorithms for Digital Interventions: Pre-Implementation Guidelines". Algorithms 15, n. 8 (22 luglio 2022): 255. http://dx.doi.org/10.3390/a15080255.
Testo completoRodríguez Sánchez, Francisco, Ildeberto Santos-Ruiz, Joaquín Domínguez-Zenteno e Francisco Ronay López-Estrada. "Control Applications Using Reinforcement Learning: An Overview". Memorias del Congreso Nacional de Control Automático 5, n. 1 (17 ottobre 2022): 67–72. http://dx.doi.org/10.58571/cnca.amca.2022.019.
Testo completoAbbass, Mahmoud Abdelkader Bashery, e Hyun-Soo Kang. "Drone Elevation Control Based on Python-Unity Integrated Framework for Reinforcement Learning Applications". Drones 7, n. 4 (24 marzo 2023): 225. http://dx.doi.org/10.3390/drones7040225.
Testo completoMann, Timothy, e Yoonsuck Choe. "Scaling Up Reinforcement Learning through Targeted Exploration". Proceedings of the AAAI Conference on Artificial Intelligence 25, n. 1 (4 agosto 2011): 435–40. http://dx.doi.org/10.1609/aaai.v25i1.7929.
Testo completoCheng, Richard, Gábor Orosz, Richard M. Murray e Joel W. Burdick. "End-to-End Safe Reinforcement Learning through Barrier Functions for Safety-Critical Continuous Control Tasks". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 luglio 2019): 3387–95. http://dx.doi.org/10.1609/aaai.v33i01.33013387.
Testo completoKirsch, Louis, Sebastian Flennerhag, Hado van Hasselt, Abram Friesen, Junhyuk Oh e Yutian Chen. "Introducing Symmetries to Black Box Meta Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 36, n. 7 (28 giugno 2022): 7202–10. http://dx.doi.org/10.1609/aaai.v36i7.20681.
Testo completoKim, Hyun-Su, e Uksun Kim. "Development of a Control Algorithm for a Semi-Active Mid-Story Isolation System Using Reinforcement Learning". Applied Sciences 13, n. 4 (4 febbraio 2023): 2053. http://dx.doi.org/10.3390/app13042053.
Testo completoPrakash, Kritika, Fiza Husain, Praveen Paruchuri e Sujit Gujar. "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework". Proceedings of the AAAI Conference on Artificial Intelligence 36, n. 7 (28 giugno 2022): 8009–16. http://dx.doi.org/10.1609/aaai.v36i7.20772.
Testo completoNiazi, Abdolkarim, Norizah Redzuan, Raja Ishak Raja Hamzah e Sara Esfandiari. "Improvement on Supporting Machine Learning Algorithm for Solving Problem in Immediate Decision Making". Advanced Materials Research 566 (settembre 2012): 572–79. http://dx.doi.org/10.4028/www.scientific.net/amr.566.572.
Testo completoTesi sul tema "RL ALGORITHMS"
Marcus, Elwin. "Simulating market maker behaviour using Deep Reinforcement Learning to understand market microstructure". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-240682.
Testo completoMarknadens mikrostruktur studerar hur utbytet av finansiella tillgångar sker enligt explicita regler. Algoritmisk och högfrekvenshandel har förändrat moderna finansmarknaders strukturer under de senaste 5 till 10 åren. Detta har även påverkat pålitligheten hos tidigare använda metoder från exempelvis ekonometri för att studera marknadens mikrostruktur. Maskininlärning och Reinforcement Learning har blivit mer populära, med många olika användningsområden både inom finans och andra fält. Inom finansfältet har dessa typer av metoder använts främst inom handel och optimal exekvering av ordrar. I denna uppsats kombineras både Reinforcement Learning och marknadens mikrostruktur, för att simulera en aktiemarknad baserad på NASDAQ i Norden. Där tränas market maker - agenter via Reinforcement Learning med målet att förstå marknadens mikrostruktur som uppstår via agenternas interaktioner. I denna uppsats utvärderas och testas agenterna på en dealer – marknad tillsammans med en limit - orderbok. Vilket särskiljer denna studie tillsammans med de två algoritmerna DQN och PPO från tidigare studier. Främst har stokastisk optimering använts för liknande problem i tidigare studier. Agenterna lyckas framgångsrikt med att återskapa egenskaper hos finansiella tidsserier som återgång till medelvärdet och avsaknad av linjär autokorrelation. Agenterna lyckas också med att vinna över slumpmässiga strategier, med maximal vinst på 200%. Slutgiltigen lyckas även agenterna med att visa annan handelsdynamik som förväntas ske på en verklig marknad. Huvudsakligen: kluster av spreads, optimal hantering av aktielager och en minskning av spreads under simuleringarna. Detta visar att Reinforcement Learning med PPO eller DQN är relevanta val vid modellering av marknadens mikrostruktur.
ALI, FAIZ MOHAMMAD. "CART POLE SYSTEM ANALYSIS AND CONTROL USING MACHINE LEARNING ALGORITHMS". Thesis, 2022. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19298.
Testo completoCapitoli di libri sul tema "RL ALGORITHMS"
Ahlawat, Samit. "Recent RL Algorithms". In Reinforcement Learning for Finance, 349–402. Berkeley, CA: Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-8835-1_6.
Testo completoNandy, Abhishek, e Manisha Biswas. "RL Theory and Algorithms". In Reinforcement Learning, 19–69. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-3285-9_2.
Testo completoHahn, Ernst Moritz, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi e Dominik Wojtczak. "Mungojerrie: Linear-Time Objectives in Model-Free Reinforcement Learning". In Tools and Algorithms for the Construction and Analysis of Systems, 527–45. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30823-9_27.
Testo completoRamponi, Giorgia. "Learning in the Presence of Multiple Agents". In Special Topics in Information Technology, 93–103. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15374-7_8.
Testo completoMetelli, Alberto Maria. "Configurable Environments in Reinforcement Learning: An Overview". In Special Topics in Information Technology, 101–13. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85918-3_9.
Testo completoGros, Timo P., Holger Hermanns, Jörg Hoffmann, Michaela Klauck, Maximilian A. Köhl e Verena Wolf. "MoGym: Using Formal Models for Training and Verifying Decision-making Agents". In Computer Aided Verification, 430–43. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13188-2_21.
Testo completoDu, Huaiyu, e Rafał Jóźwiak. "Representation of Observations in Reinforcement Learning for Playing Arcade Fighting Game". In Digital Interaction and Machine Intelligence, 45–55. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-37649-8_5.
Testo completoBugaenko, Andrey A. "Replacing the Reinforcement Learning (RL) to the Auto Reinforcement Learning (AutoRL) Algorithms to Find the Optimal Structure of Business Processes in the Bank". In Software Engineering Application in Informatics, 15–22. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-90318-3_2.
Testo completoWang, Dasong, e Roland Snooks. "Artificial Intuitions of Generative Design: An Approach Based on Reinforcement Learning". In Proceedings of the 2020 DigitalFUTURES, 189–98. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4400-6_18.
Testo completoZhang, Sizhe, Haitao Wang, Jian Wen e Hejun Wu. "A Deep RL Algorithm for Location Optimization of Regional Express Distribution Center Using IoT Data". In Lecture Notes in Electrical Engineering, 377–84. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0416-7_38.
Testo completoAtti di convegni sul tema "RL ALGORITHMS"
Simão, Thiago D. "Safe and Sample-Efficient Reinforcement Learning Algorithms for Factored Environments". In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/919.
Testo completoChrabąszcz, Patryk, Ilya Loshchilov e Frank Hutter. "Back to Basics: Benchmarking Canonical Evolution Strategies for Playing Atari". In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/197.
Testo completoArusoaie, Andrei, David Nowak, Vlad Rusu e Dorel Lucanu. "A Certified Procedure for RL Verification". In 2017 19th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). IEEE, 2017. http://dx.doi.org/10.1109/synasc.2017.00031.
Testo completoGajane, Pratik, Peter Auer e Ronald Ortner. "Autonomous Exploration for Navigating in MDPs Using Blackbox RL Algorithms". In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/413.
Testo completoLin, Zichuan, Tianqi Zhao, Guangwen Yang e Lintao Zhang. "Episodic Memory Deep Q-Networks". In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/337.
Testo completoMartin, Jarryd, Suraj Narayanan S., Tom Everitt e Marcus Hutter. "Count-Based Exploration in Feature Space for Reinforcement Learning". In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/344.
Testo completoDa Silva, Felipe Leno, e Anna Helena Reali Costa. "Methods and Algorithms for Knowledge Reuse in Multiagent Reinforcement Learning". In Concurso de Teses e Dissertações da SBC. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/ctd.2020.11360.
Testo completoGao, Yang, Christian M. Meyer, Mohsen Mesgar e Iryna Gurevych. "Reward Learning for Efficient Reinforcement Learning in Extractive Document Summarisation". In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/326.
Testo completoZhao, Enmin, Shihong Deng, Yifan Zang, Yongxin Kang, Kai Li e Junliang Xing. "Potential Driven Reinforcement Learning for Hard Exploration Tasks". In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/290.
Testo completoSarafian, Elad, Aviv Tamar e Sarit Kraus. "Constrained Policy Improvement for Efficient Reinforcement Learning". In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/396.
Testo completoRapporti di organizzazioni sul tema "RL ALGORITHMS"
A Decision-Making Method for Connected Autonomous Driving Based on Reinforcement Learning. SAE International, dicembre 2020. http://dx.doi.org/10.4271/2020-01-5154.
Testo completo