Articoli di riviste sul tema "RL ALGORITHMS"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "RL ALGORITHMS".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Lahande, Prathamesh, Parag Kaveri e Jatinderkumar Saini. "Reinforcement Learning for Reducing the Interruptions and Increasing Fault Tolerance in the Cloud Environment". Informatics 10, n. 3 (2 agosto 2023): 64. http://dx.doi.org/10.3390/informatics10030064.
Testo completoTrella, Anna L., Kelly W. Zhang, Inbal Nahum-Shani, Vivek Shetty, Finale Doshi-Velez e Susan A. Murphy. "Designing Reinforcement Learning Algorithms for Digital Interventions: Pre-Implementation Guidelines". Algorithms 15, n. 8 (22 luglio 2022): 255. http://dx.doi.org/10.3390/a15080255.
Testo completoRodríguez Sánchez, Francisco, Ildeberto Santos-Ruiz, Joaquín Domínguez-Zenteno e Francisco Ronay López-Estrada. "Control Applications Using Reinforcement Learning: An Overview". Memorias del Congreso Nacional de Control Automático 5, n. 1 (17 ottobre 2022): 67–72. http://dx.doi.org/10.58571/cnca.amca.2022.019.
Testo completoAbbass, Mahmoud Abdelkader Bashery, e Hyun-Soo Kang. "Drone Elevation Control Based on Python-Unity Integrated Framework for Reinforcement Learning Applications". Drones 7, n. 4 (24 marzo 2023): 225. http://dx.doi.org/10.3390/drones7040225.
Testo completoMann, Timothy, e Yoonsuck Choe. "Scaling Up Reinforcement Learning through Targeted Exploration". Proceedings of the AAAI Conference on Artificial Intelligence 25, n. 1 (4 agosto 2011): 435–40. http://dx.doi.org/10.1609/aaai.v25i1.7929.
Testo completoCheng, Richard, Gábor Orosz, Richard M. Murray e Joel W. Burdick. "End-to-End Safe Reinforcement Learning through Barrier Functions for Safety-Critical Continuous Control Tasks". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 luglio 2019): 3387–95. http://dx.doi.org/10.1609/aaai.v33i01.33013387.
Testo completoKirsch, Louis, Sebastian Flennerhag, Hado van Hasselt, Abram Friesen, Junhyuk Oh e Yutian Chen. "Introducing Symmetries to Black Box Meta Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 36, n. 7 (28 giugno 2022): 7202–10. http://dx.doi.org/10.1609/aaai.v36i7.20681.
Testo completoKim, Hyun-Su, e Uksun Kim. "Development of a Control Algorithm for a Semi-Active Mid-Story Isolation System Using Reinforcement Learning". Applied Sciences 13, n. 4 (4 febbraio 2023): 2053. http://dx.doi.org/10.3390/app13042053.
Testo completoPrakash, Kritika, Fiza Husain, Praveen Paruchuri e Sujit Gujar. "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework". Proceedings of the AAAI Conference on Artificial Intelligence 36, n. 7 (28 giugno 2022): 8009–16. http://dx.doi.org/10.1609/aaai.v36i7.20772.
Testo completoNiazi, Abdolkarim, Norizah Redzuan, Raja Ishak Raja Hamzah e Sara Esfandiari. "Improvement on Supporting Machine Learning Algorithm for Solving Problem in Immediate Decision Making". Advanced Materials Research 566 (settembre 2012): 572–79. http://dx.doi.org/10.4028/www.scientific.net/amr.566.572.
Testo completoMu, Tong, Georgios Theocharous, David Arbour e Emma Brunskill. "Constraint Sampling Reinforcement Learning: Incorporating Expertise for Faster Learning". Proceedings of the AAAI Conference on Artificial Intelligence 36, n. 7 (28 giugno 2022): 7841–49. http://dx.doi.org/10.1609/aaai.v36i7.20753.
Testo completoKołota, Jakub, e Turhan Can Kargin. "Comparison of Various Reinforcement Learning Environments in the Context of Continuum Robot Control". Applied Sciences 13, n. 16 (11 agosto 2023): 9153. http://dx.doi.org/10.3390/app13169153.
Testo completoJang, Sun-Ho, Woo-Jin Ahn, Yu-Jin Kim, Hyung-Gil Hong, Dong-Sung Pae e Myo-Taeg Lim. "Stable and Efficient Reinforcement Learning Method for Avoidance Driving of Unmanned Vehicles". Electronics 12, n. 18 (6 settembre 2023): 3773. http://dx.doi.org/10.3390/electronics12183773.
Testo completoPeng, Zhiyong, Changlin Han, Yadong Liu e Zongtan Zhou. "Weighted Policy Constraints for Offline Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, n. 8 (26 giugno 2023): 9435–43. http://dx.doi.org/10.1609/aaai.v37i8.26130.
Testo completoTessler, Chen, Yuval Shpigelman, Gal Dalal, Amit Mandelbaum, Doron Haritan Kazakov, Benjamin Fuhrer, Gal Chechik e Shie Mannor. "Reinforcement Learning for Datacenter Congestion Control". Proceedings of the AAAI Conference on Artificial Intelligence 36, n. 11 (28 giugno 2022): 12615–21. http://dx.doi.org/10.1609/aaai.v36i11.21535.
Testo completoJIANG, JU, MOHAMED S. KAMEL e LEI CHEN. "AGGREGATION OF MULTIPLE REINFORCEMENT LEARNING ALGORITHMS". International Journal on Artificial Intelligence Tools 15, n. 05 (ottobre 2006): 855–61. http://dx.doi.org/10.1142/s0218213006002990.
Testo completoChen, Feng, Chenghe Wang, Fuxiang Zhang, Hao Ding, Qiaoyong Zhong, Shiliang Pu e Zongzhang Zhang. "Towards Deployment-Efficient and Collision-Free Multi-Agent Path Finding (Student Abstract)". Proceedings of the AAAI Conference on Artificial Intelligence 37, n. 13 (26 giugno 2023): 16182–83. http://dx.doi.org/10.1609/aaai.v37i13.26951.
Testo completoGuo, Kun, e Qishan Zhang. "A Discrete Artificial Bee Colony Algorithm for the Reverse Logistics Location and Routing Problem". International Journal of Information Technology & Decision Making 16, n. 05 (settembre 2017): 1339–57. http://dx.doi.org/10.1142/s0219622014500126.
Testo completoPadakandla, Sindhu. "A Survey of Reinforcement Learning Algorithms for Dynamically Varying Environments". ACM Computing Surveys 54, n. 6 (luglio 2021): 1–25. http://dx.doi.org/10.1145/3459991.
Testo completoGaon, Maor, e Ronen Brafman. "Reinforcement Learning with Non-Markovian Rewards". Proceedings of the AAAI Conference on Artificial Intelligence 34, n. 04 (3 aprile 2020): 3980–87. http://dx.doi.org/10.1609/aaai.v34i04.5814.
Testo completoSun, Peiquan, Wengang Zhou e Houqiang Li. "Attentive Experience Replay". Proceedings of the AAAI Conference on Artificial Intelligence 34, n. 04 (3 aprile 2020): 5900–5907. http://dx.doi.org/10.1609/aaai.v34i04.6049.
Testo completoChen, Zaiwei. "A Unified Lyapunov Framework for Finite-Sample Analysis of Reinforcement Learning Algorithms". ACM SIGMETRICS Performance Evaluation Review 50, n. 3 (30 dicembre 2022): 12–15. http://dx.doi.org/10.1145/3579342.3579346.
Testo completoYau, Kok-Lim Alvin, Geong-Sen Poh, Su Fong Chien e Hasan A. A. Al-Rawi. "Application of Reinforcement Learning in Cognitive Radio Networks: Models and Algorithms". Scientific World Journal 2014 (2014): 1–23. http://dx.doi.org/10.1155/2014/209810.
Testo completoTessler, Chen, Yuval Shpigelman, Gal Dalal, Amit Mandelbaum, Doron Haritan Kazakov, Benjamin Fuhrer, Gal Chechik e Shie Mannor. "Reinforcement Learning for Datacenter Congestion Control". ACM SIGMETRICS Performance Evaluation Review 49, n. 2 (17 gennaio 2022): 43–46. http://dx.doi.org/10.1145/3512798.3512815.
Testo completoJin, Zengwang, Menglu Ma, Shuting Zhang, Yanyan Hu, Yanning Zhang e Changyin Sun. "Secure State Estimation of Cyber-Physical System under Cyber Attacks: Q-Learning vs. SARSA". Electronics 11, n. 19 (1 ottobre 2022): 3161. http://dx.doi.org/10.3390/electronics11193161.
Testo completoLi, Shaodong, Xiaogang Yuan e Jie Niu. "Robotic Peg-in-Hole Assembly Strategy Research Based on Reinforcement Learning Algorithm". Applied Sciences 12, n. 21 (3 novembre 2022): 11149. http://dx.doi.org/10.3390/app122111149.
Testo completoPan, Yaozong, Jian Zhang, Chunhui Yuan e Haitao Yang. "Supervised Reinforcement Learning via Value Function". Symmetry 11, n. 4 (24 aprile 2019): 590. http://dx.doi.org/10.3390/sym11040590.
Testo completoKabanda, Professor Gabriel, Colletor Tendeukai Chipfumbu e Tinashe Chingoriwo. "A Reinforcement Learning Paradigm for Cybersecurity Education and Training". Oriental journal of computer science and technology 16, n. 01 (30 maggio 2023): 12–45. http://dx.doi.org/10.13005/ojcst16.01.02.
Testo completoYousif, Ayman Basheer, Hassan Jaleel Hassan e Gaida Muttasher. "Applying reinforcement learning for random early detaction algorithm in adaptive queue management systems". Indonesian Journal of Electrical Engineering and Computer Science 26, n. 3 (1 giugno 2022): 1684. http://dx.doi.org/10.11591/ijeecs.v26.i3.pp1684-1691.
Testo completoSzita, István, e András Lörincz. "Learning Tetris Using the Noisy Cross-Entropy Method". Neural Computation 18, n. 12 (dicembre 2006): 2936–41. http://dx.doi.org/10.1162/neco.2006.18.12.2936.
Testo completoYe, Weicheng, e Dangxing Chen. "Analysis of Performance Measure in Q Learning with UCB Exploration". Mathematics 10, n. 4 (12 febbraio 2022): 575. http://dx.doi.org/10.3390/math10040575.
Testo completoLin, Xingbin, Deyu Yuan e Xifei Li. "Reinforcement Learning with Dual Safety Policies for Energy Savings in Building Energy Systems". Buildings 13, n. 3 (21 febbraio 2023): 580. http://dx.doi.org/10.3390/buildings13030580.
Testo completoLi, Luchen, e A. Aldo Faisal. "Bayesian Distributional Policy Gradients". Proceedings of the AAAI Conference on Artificial Intelligence 35, n. 10 (18 maggio 2021): 8429–37. http://dx.doi.org/10.1609/aaai.v35i10.17024.
Testo completoGrewal, Yashvir S., Frits De Nijs e Sarah Goodwin. "Evaluating Meta-Reinforcement Learning through a HVAC Control Benchmark (Student Abstract)". Proceedings of the AAAI Conference on Artificial Intelligence 35, n. 18 (18 maggio 2021): 15785–86. http://dx.doi.org/10.1609/aaai.v35i18.17889.
Testo completoVillalpando-Hernandez, Rafaela, Cesar Vargas-Rosales e David Munoz-Rodriguez. "Localization Algorithm for 3D Sensor Networks: A Recursive Data Fusion Approach". Sensors 21, n. 22 (17 novembre 2021): 7626. http://dx.doi.org/10.3390/s21227626.
Testo completoZhao, Richard, e Duane Szafron. "Learning Character Behaviors Using Agent Modeling in Games". Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment 5, n. 1 (16 ottobre 2009): 179–85. http://dx.doi.org/10.1609/aiide.v5i1.12369.
Testo completoHu e Xu. "Fuzzy Reinforcement Learning and Curriculum Transfer Learning for Micromanagement in Multi-Robot Confrontation". Information 10, n. 11 (2 novembre 2019): 341. http://dx.doi.org/10.3390/info10110341.
Testo completoShen, Haocheng, Jason Yosinski, Petar Kormushev, Darwin G. Caldwell e Hod Lipson. "Learning Fast Quadruped Robot Gaits with the RL PoWER Spline Parameterization". Cybernetics and Information Technologies 12, n. 3 (1 settembre 2012): 66–75. http://dx.doi.org/10.2478/cait-2012-0022.
Testo completoShaposhnikova, Sofiia, e Dmytro Omelian. "TOWARDS EFFECTIVE STRATEGIES FOR MOBILE ROBOT USING REINFORCEMENT LEARNING AND GRAPH ALGORITHMS". Automation of technological and business processes 15, n. 2 (19 giugno 2023): 24–34. http://dx.doi.org/10.15673/atbp.v15i2.2522.
Testo completoLiao, Hanlin. "Urban Intersection Simulation and Verification via Deep Reinforcement Learning Algorithms". Journal of Physics: Conference Series 2435, n. 1 (1 febbraio 2023): 012019. http://dx.doi.org/10.1088/1742-6596/2435/1/012019.
Testo completoDing, Yuhao, Ming Jin e Javad Lavaei. "Non-stationary Risk-Sensitive Reinforcement Learning: Near-Optimal Dynamic Regret, Adaptive Detection, and Separation Design". Proceedings of the AAAI Conference on Artificial Intelligence 37, n. 6 (26 giugno 2023): 7405–13. http://dx.doi.org/10.1609/aaai.v37i6.25901.
Testo completoSarkar, Soumyadip. "Quantitative Trading using Deep Q Learning". International Journal for Research in Applied Science and Engineering Technology 11, n. 4 (30 aprile 2023): 731–38. http://dx.doi.org/10.22214/ijraset.2023.50170.
Testo completoZhang, Ningyan. "Analysis of reinforce learning in medical treatment". Applied and Computational Engineering 5, n. 1 (14 giugno 2023): 48–53. http://dx.doi.org/10.54254/2755-2721/5/20230527.
Testo completoPuspitasari, Annisa Anggun, e Byung Moo Lee. "A Survey on Reinforcement Learning for Reconfigurable Intelligent Surfaces in Wireless Communications". Sensors 23, n. 5 (24 febbraio 2023): 2554. http://dx.doi.org/10.3390/s23052554.
Testo completoDelipetrev, Blagoj, Andreja Jonoski e Dimitri P. Solomatine. "A novel nested stochastic dynamic programming (nSDP) and nested reinforcement learning (nRL) algorithm for multipurpose reservoir optimization". Journal of Hydroinformatics 19, n. 1 (17 settembre 2016): 47–61. http://dx.doi.org/10.2166/hydro.2016.243.
Testo completoWang, Mengmei. "Optimizing Multitask Assignment of Internet of Things Devices by Reinforcement Learning in Mobile Crowdsensing Scenes". Security and Communication Networks 2022 (17 agosto 2022): 1–10. http://dx.doi.org/10.1155/2022/6202237.
Testo completoГайнетдинов, А. Ф. "NeRF IN REINFORCEMENT LEARNING FOR IMAGE RECOGNITION". Южно-Сибирский научный вестник, n. 2(48) (30 aprile 2023): 63–72. http://dx.doi.org/10.25699/sssb.2023.48.2.011.
Testo completoNicola, Marcel, e Claudiu-Ionel Nicola. "Improvement of Linear and Nonlinear Control for PMSM Using Computational Intelligence and Reinforcement Learning". Mathematics 10, n. 24 (9 dicembre 2022): 4667. http://dx.doi.org/10.3390/math10244667.
Testo completoYou, Haoyi, Beichen Yu, Haiming Jin, Zhaoxing Yang e Jiahui Sun. "User-Oriented Robust Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, n. 12 (26 giugno 2023): 15269–77. http://dx.doi.org/10.1609/aaai.v37i12.26781.
Testo completoYang, Bin, Muhammad Haseeb Arshad e Qing Zhao. "Packet-Level and Flow-Level Network Intrusion Detection Based on Reinforcement Learning and Adversarial Training". Algorithms 15, n. 12 (30 novembre 2022): 453. http://dx.doi.org/10.3390/a15120453.
Testo completo