Letteratura scientifica selezionata sul tema "Robust Long-Short Term Memory (RoLSTM)"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Robust Long-Short Term Memory (RoLSTM)".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Robust Long-Short Term Memory (RoLSTM)"
Javid, Gelareh, Djaffar Ould Abdeslam e Michel Basset. "Adaptive Online State of Charge Estimation of EVs Lithium-Ion Batteries with Deep Recurrent Neural Networks". Energies 14, n. 3 (1 febbraio 2021): 758. http://dx.doi.org/10.3390/en14030758.
Testo completoFister, Dušan, Matjaž Perc e Timotej Jagrič. "Two robust long short-term memory frameworks for trading stocks". Applied Intelligence 51, n. 10 (27 febbraio 2021): 7177–95. http://dx.doi.org/10.1007/s10489-021-02249-x.
Testo completoLiu, Yong, Xin Hao, Biling Zhang e Yuyan Zhang. "Simplified long short-term memory model for robust and fast prediction". Pattern Recognition Letters 136 (agosto 2020): 81–86. http://dx.doi.org/10.1016/j.patrec.2020.05.033.
Testo completoYang, Haimin, Zhisong Pan e Qing Tao. "Robust and Adaptive Online Time Series Prediction with Long Short-Term Memory". Computational Intelligence and Neuroscience 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/9478952.
Testo completoSon, Namrye, Seunghak Yang e Jeongseung Na. "Hybrid Forecasting Model for Short-Term Wind Power Prediction Using Modified Long Short-Term Memory". Energies 12, n. 20 (15 ottobre 2019): 3901. http://dx.doi.org/10.3390/en12203901.
Testo completoNgoc-Lan Huynh, Anh, Ravinesh C. Deo, Mumtaz Ali, Shahab Abdulla e Nawin Raj. "Novel short-term solar radiation hybrid model: Long short-term memory network integrated with robust local mean decomposition". Applied Energy 298 (settembre 2021): 117193. http://dx.doi.org/10.1016/j.apenergy.2021.117193.
Testo completoDarling, Stephen, Richard J. Allen e Jelena Havelka. "Visuospatial Bootstrapping". Current Directions in Psychological Science 26, n. 1 (febbraio 2017): 3–9. http://dx.doi.org/10.1177/0963721416665342.
Testo completoAvci, Gunes, Steven P. Woods, Marizela Verduzco, David P. Sheppard, James F. Sumowski, Nancy D. Chiaravalloti e John DeLuca. "Effect of Retrieval Practice on Short-Term and Long-Term Retention in HIV+ Individuals". Journal of the International Neuropsychological Society 23, n. 3 (9 gennaio 2017): 214–22. http://dx.doi.org/10.1017/s1355617716001089.
Testo completoBukhari, Syed Basit Ali, Khawaja Khalid Mehmood, Abdul Wadood e Herie Park. "Intelligent Islanding Detection of Microgrids Using Long Short-Term Memory Networks". Energies 14, n. 18 (13 settembre 2021): 5762. http://dx.doi.org/10.3390/en14185762.
Testo completoBaddar, Wissam J., e Yong Man Ro. "Encoding features robust to unseen modes of variation with attentive long short-term memory". Pattern Recognition 100 (aprile 2020): 107159. http://dx.doi.org/10.1016/j.patcog.2019.107159.
Testo completoTesi sul tema "Robust Long-Short Term Memory (RoLSTM)"
Javid, Gelareh. "Contribution à l’estimation de charge et à la gestion optimisée d’une batterie Lithium-ion : application au véhicule électrique". Thesis, Mulhouse, 2021. https://www.learning-center.uha.fr/.
Testo completoThe State Of Charge (SOC) estimation is a significant issue for safe performance and the lifespan of Lithium-ion (Li-ion) batteries, which is used to power the Electric Vehicles (EVs). In this thesis, the accuracy of SOC estimation is investigated using Deep Recurrent Neural Network (DRNN) algorithms. To do this, for a one cell Li-ion battery, three new SOC estimator based on different DRNN algorithms are proposed: a Bidirectional LSTM (BiLSTM) method, Robust Long-Short Term Memory (RoLSTM) algorithm, and a Gated Recurrent Units (GRUs) technique. Using these, one is not dependent on precise battery models and can avoid complicated mathematical methods especially in a battery pack. In addition, these models are able to precisely estimate the SOC at varying temperature. Also, unlike the traditional recursive neural network where content is re-written at each time, these networks can decide on preserving the current memory through the proposed gateways. In such case, it can easily transfer the information over long paths to receive and maintain long-term dependencies. Comparing the results indicates the BiLSTM network has a better performance than the other two. Moreover, the BiLSTM model can work with longer sequences from two direction, the past and the future, without gradient vanishing problem. This feature helps to select a sequence length as much as a discharge period in one drive cycle, and to have more accuracy in the estimation. Also, this model well behaved against the incorrect initial value of SOC. Finally, a new BiLSTM method introduced to estimate the SOC of a pack of batteries in an Ev. IPG Carmaker software was used to collect data and test the model in the simulation. The results showed that the suggested algorithm can provide a good SOC estimation without using any filter in the Battery Management System (BMS)
Capitoli di libri sul tema "Robust Long-Short Term Memory (RoLSTM)"
Aung, Zaw Htet, e Panrasee Ritthipravat. "Robust Visual Voice Activity Detection Using Long Short-Term Memory Recurrent Neural Network". In Image and Video Technology, 380–91. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29451-3_31.
Testo completoKiyani, Anum Tanveer, Aboubaker Lasebae, Kamran Ali, Ahmed Alkhayyat, Bushra Haq e Bushra Naeem. "Robust Continuous User Authentication System Using Long Short Term Memory Network for Healthcare". In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 295–307. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95593-9_22.
Testo completoSaideni, Wael, David Helbert, Fabien Courreges e Jean Pierre Cances. "A Novel Video Prediction Algorithm Based on Robust Spatiotemporal Convolutional Long Short-Term Memory (Robust-ST-ConvLSTM)". In Proceedings of Seventh International Congress on Information and Communication Technology, 193–204. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1610-6_17.
Testo completoSethi, Nishu, Shalini Bhaskar Bajaj, Jitendra Kumar Verma e Utpal Shrivastava. "Google Stock Movement". In Multidisciplinary Functions of Blockchain Technology in AI and IoT Applications, 70–87. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-5876-8.ch004.
Testo completoDavid, Hepzibah Elizabeth, K. Ramalakshmi, R. Venkatesan e G. Hemalatha. "Tomato Leaf Disease Detection Using Hybrid CNN-RNN Model". In Advances in Parallel Computing. IOS Press, 2021. http://dx.doi.org/10.3233/apc210108.
Testo completoAtti di convegni sul tema "Robust Long-Short Term Memory (RoLSTM)"
Grushin, Alexander, Derek D. Monner, James A. Reggia e Ajay Mishra. "Robust human action recognition via long short-term memory". In 2013 International Joint Conference on Neural Networks (IJCNN 2013 - Dallas). IEEE, 2013. http://dx.doi.org/10.1109/ijcnn.2013.6706797.
Testo completoWöllmer, Martin, Yang Sun, Florian Eyben e Björn Schuller. "Long short-term memory networks for noise robust speech recognition". In Interspeech 2010. ISCA: ISCA, 2010. http://dx.doi.org/10.21437/interspeech.2010-30.
Testo completoMeng, Zhong, Shinji Watanabe, John R. Hershey e Hakan Erdogan. "Deep long short-term memory adaptive beamforming networks for multichannel robust speech recognition". In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017. http://dx.doi.org/10.1109/icassp.2017.7952160.
Testo completoLiu, Yuzhou, e DeLiang Wang. "Time and frequency domain long short-term memory for noise robust pitch tracking". In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017. http://dx.doi.org/10.1109/icassp.2017.7953228.
Testo completoMittal, Anant, Priya Aggarwal, Luiz Pessoa e Anubha Gupta. "Robust brain state decoding using bidirectional long short term memory networks in functional MRI". In ICVGIP '21: Indian Conference on Computer Vision, Graphics and Image Processing. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3490035.3490269.
Testo completoC. Lemos Neto, Álvaro, Rodrigo A. Coelho e Cristiano L. de Castro. "An Incremental Learning approach using Long Short-Term Memory Neural Networks". In Congresso Brasileiro de Automática - 2020. sbabra, 2020. http://dx.doi.org/10.48011/asba.v2i1.1491.
Testo completoGeiger, Jürgen T., Zixing Zhang, Felix Weninger, Björn Schuller e Gerhard Rigoll. "Robust speech recognition using long short-term memory recurrent neural networks for hybrid acoustic modelling". In Interspeech 2014. ISCA: ISCA, 2014. http://dx.doi.org/10.21437/interspeech.2014-151.
Testo completoKolboek, Morten, Zheng-Hua Tan e Jesper Jensen. "Speech enhancement using Long Short-Term Memory based recurrent Neural Networks for noise robust Speaker Verification". In 2016 IEEE Spoken Language Technology Workshop (SLT). IEEE, 2016. http://dx.doi.org/10.1109/slt.2016.7846281.
Testo completoOkai, Jeremiah, Stylianos Paraschiakos, Marian Beekman, Arno Knobbe e Claudio Rebelo de Sa. "Building robust models for Human Activity Recognition from raw accelerometers data using Gated Recurrent Units and Long Short Term Memory Neural Networks". In 2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2019. http://dx.doi.org/10.1109/embc.2019.8857288.
Testo completoBryan, Kaylen J., Mitchell Solomon, Emily Jensen, Christina Coley, Kailas Rajan, Charlie Tian, Nenad Mijatovic et al. "Classification of Rail Switch Data Using Machine Learning Techniques". In 2018 Joint Rail Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/jrc2018-6175.
Testo completo