Letteratura scientifica selezionata sul tema "Rota-Baxter operator"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Rota-Baxter operator".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Rota-Baxter operator"
BAI, CHENGMING, LI GUO e XIANG NI. "RELATIVE ROTA–BAXTER OPERATORS AND TRIDENDRIFORM ALGEBRAS". Journal of Algebra and Its Applications 12, n. 07 (16 maggio 2013): 1350027. http://dx.doi.org/10.1142/s0219498813500278.
Testo completoWang, Zhongwei, Zhen Guan, Yi Zhang e Liangyun Zhang. "Rota–Baxter Operators on Cocommutative Weak Hopf Algebras". Mathematics 10, n. 1 (28 dicembre 2021): 95. http://dx.doi.org/10.3390/math10010095.
Testo completoXu, Senrong, Wei Wang e Jia Zhao. "Twisted Rota-Baxter operators on Hom-Lie algebras". AIMS Mathematics 9, n. 2 (2023): 2619–40. http://dx.doi.org/10.3934/math.2024129.
Testo completoZhao, Jia, e Yu Qiao. "Cohomology and Deformations of Relative Rota–Baxter Operators on Lie-Yamaguti Algebras". Mathematics 12, n. 1 (4 gennaio 2024): 166. http://dx.doi.org/10.3390/math12010166.
Testo completoGuo, Shuangjian, Shengxiang Wang e Xiaohui Zhang. "The Classical Hom–Leibniz Yang–Baxter Equation and Hom–Leibniz Bialgebras". Mathematics 10, n. 11 (3 giugno 2022): 1920. http://dx.doi.org/10.3390/math10111920.
Testo completoTang, Rong, Yunhe Sheng e Yanqiu Zhou. "Deformations of relative Rota–Baxter operators on Leibniz algebras". International Journal of Geometric Methods in Modern Physics 17, n. 12 (4 settembre 2020): 2050174. http://dx.doi.org/10.1142/s0219887820501741.
Testo completoZhou, Shuyun, e Li Guo. "Rota-Baxter TD Algebra and Quinquedendriform Algebra". Algebra Colloquium 24, n. 01 (15 febbraio 2017): 53–74. http://dx.doi.org/10.1142/s1005386717000037.
Testo completoLiu, Ling, Abdenacer Makhlouf, Claudia Menini e Florin Panaite. "-Rota–Baxter Operators, Infinitesimal Hom-bialgebras and the Associative (Bi)Hom-Yang–Baxter Equation". Canadian Mathematical Bulletin 62, n. 02 (7 gennaio 2019): 355–72. http://dx.doi.org/10.4153/cmb-2018-028-8.
Testo completoDas, Apurba, e Satyendra Kumar Mishra. "The L∞-deformations of associative Rota–Baxter algebras and homotopy Rota–Baxter operators". Journal of Mathematical Physics 63, n. 5 (1 maggio 2022): 051703. http://dx.doi.org/10.1063/5.0076566.
Testo completoRosenkranz, Markus, Xing Gao e Li Guo. "An algebraic study of multivariable integration and linear substitution". Journal of Algebra and Its Applications 18, n. 11 (19 agosto 2019): 1950207. http://dx.doi.org/10.1142/s0219498819502074.
Testo completoTesi sul tema "Rota-Baxter operator"
Hajjaji, Atef. "Étude des opérateurs de Rota-Baxter relatifs sur les algèbres ternaires de type Lie et Jordan". Electronic Thesis or Diss., Mulhouse, 2024. http://www.theses.fr/2024MULH7172.
Testo completoThe goal of this thesis is to explore relative Rota-Baxter operators in the context of ternary algebras of both Lie and Jordan types. We mainly consider Lie triple systems, 3-Lie algebras and ternary Jordan algebras. The study covers their structure, cohomology, deformations, and their connection with the Yang-Baxter equations. The work is divided into three main parts. The first part aims first to introduce and study a graded Lie algebra whose Maurer-Cartan elements are Lie triple systems. It turns out to be the controlling algebra of Lie triple systems deformations and fits with the adjoint cohomology theory of Lie triple systems introduced by Yamaguti. In addition, we introduce the notion of relative Rota-Baxter operators on Lie triple systems and construct a Lie 3-algebra as a special case of L∞-algebras, where the Maurer-Cartan elements correspond to relative Rota-Baxter operators. In the second part, we introduce the concept of twisted relative Rota-Baxter operators on 3-Lie algebras and construct an L∞-algebra, where the Maurer-Cartan elements are twisted relative Rota-Baxter operators. This allows us to define the Chevalley-Eilenberg cohomology of a twisted relative Rota-Baxter operator. In the last part, we deal with a representation theory of ternary Jordan algebras. In particular, we introduce and discuss the concept of coherent ternary Jordan algebras. We then define relative Rota-Baxter operators for ternary Jordan algebras and discuss solutions ofthe ternary Jordan Yang-Baxter equation involving relative Rota-Baxter operators. Moreover, we investigate ternary pre-Jordan algebras as the underlying algebraic structure of relative Rota-Baxter operators
Atti di convegni sul tema "Rota-Baxter operator"
Anghel, Cristian. "On a class of Rota-Baxter operators with geometric origin". In 10th Jubilee International Conference of the Balkan Physical Union. Author(s), 2019. http://dx.doi.org/10.1063/1.5091250.
Testo completo