Tesi sul tema "Sentiment Analysis"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Sentiment Analysis".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Kavaliauskas, Vytautas. "Nuomonių analizės taikymas komentarams lietuvių kalboje". Master's thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20110615_130252-94422.
Testo completoIn past few years, more and more people started to express their views, beliefs and experiences on the Internet. This caused the emergence of a new research field, which includes opinion mining and sentiment analysis. Various business companies are actively interested in researches of this domain and seeing big potential for practical adaptation of the results. This Master Thesis covers the review of theoretical and practical results of opinion mining and sentiment analysis, including attempt of creating prototype system for opinion analysis of comments in Lithuanian. Also this study aims to identify problems related to adaptation of Lithuanian language in opinion mining and sentiment analysis system work. Finally, last part contains of the formulated guidance steps for development and improvement of the opinion mining and sentiment analysis.
Bao, Lingxian. "Sentiment induction for attention and lexicon regularized neural sentiment analysis: improving aspect-based neural sentiment analysis with lexicon enhancement, attention regularization and sentiment induction". Doctoral thesis, Universitat Pompeu Fabra, 2021. http://hdl.handle.net/10803/673363.
Testo completoLas redes neuronales profundas como enfoque integral carecen de flexibilidad y robustez desde el punto de vista de la aplicación, ya que no se puede ajustar fácilmente la red para solucionar un problema evidente, especialmente cuando no se dispone de nuevos datos de entrenamiento: por ejemplo, cuando el modelo predice sistemáticamente positivo al ver la palabra ”decepcionado”. Por otro lado, se hace menos hincapié en que es probable que el mecanismo de atención "se concentre demasiado” en partes concretas de una oración, mientras ignora posiciones que proporcionan información clave para juzgar la polaridad. En esta tesis, describimos un enfoque sencillo pero eficaz para aprovechar la información del léxico de modo que el modelo sea maás flexible y robusto. También exploramos el efecto de regularizar los vectores de atención para permitir que la red tenga un ”enfoque” más amplio en la secuencia de entrada. Además, tratamos de mejorar aún más el sistema que proponemos de análisis profundo de sentimiento con el soporte de léxico aplicando sobre el mismo la adaptación del anàlisis de sentimiento al dominio.
深度神经网络作为一种端到端的方法,从应用的角度来看缺乏灵 活性和鲁棒性。例如,当模型看到词语“失望”却始终预测正值时, 在没有新的训练数据的情况下,很难轻易地通过调整模型来解决问 题。另外,常用的注意力机制可能会“过度关注”句子的某些特定部 分,从而忽略能提供判断极性关键信息的位置;此情况在业界鲜有 提及。在本文中,我们描述一种简单却行之有效的方法将词典信息 与深度神经网络相结合,从而改进模型的灵活性及鲁棒性。我们亦 探索通过正则化注意力向量来抑制注意力机制“过度关注”的问题。 此外,我们尝试通过应用情感域自适应来进一步改进所提出的词典 增强型神经情感分析系统。
Erogul, Umut. "Sentiment Analysis In Turkish". Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610616/index.pdf.
Testo completoCheng, Tai Wai David. "Corpus and sentiment analysis". Thesis, University of Surrey, 2007. http://epubs.surrey.ac.uk/2744/.
Testo completoNiccum, Cameron Michael. "Sentiment Analysis using Tensor2Tensor". OpenSIUC, 2018. https://opensiuc.lib.siu.edu/theses/2440.
Testo completoMelloncelli, Damiano. "Sentiment analysis in Twitter". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/6592/.
Testo completoFilho, Pedro Paulo Balage. "Aspect extraction in sentiment analysis for portuguese language". Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-05122017-140435/.
Testo completoA análise do sentimento orientada a aspectos é o campo de estudo que extrai e interpreta o sentimento, geralmente classificado como positivo ou negativo, em direção a algum alvo ou aspecto em um texto de opinião. Esta tese de doutorado detalha um estudo empírico de técnicas e métodos para extração de aspectos em análises de sentimentos baseadas em aspectos com foco na língua Portuguesa. Foram exploradas três diferentes abordagens: métodos baseados na frequências, métodos baseados na relação e métodos de aprendizagem de máquina. Em cada abordagem, este trabalho mostra um estudo comparativo entre um córpus para o Português e outro para o Inglês e as diferenças encontradas na aplicação destas abordagens. Além disso, o conhecimento linguístico mais rico também é explorado pelo uso de dependências sintáticas e papéis semânticos, levando a melhores resultados. Este trabalho resultou no estabelecimento de novos padrões de avaliação para a extração de aspectos em Português.
Gaudette, Lisa. "Compact features for sentiment analysis". Thesis, University of Ottawa (Canada), 2009. http://hdl.handle.net/10393/28295.
Testo completoAthar, Awais. "Sentiment analysis of scientific citations". Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.707942.
Testo completoSmith, Phillip. "Sentiment analysis of patient feedback". Thesis, University of Birmingham, 2017. http://etheses.bham.ac.uk//id/eprint/7406/.
Testo completoHamdan, Hussam. "Sentiment analysis in social media". Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4356.
Testo completoIn this thesis, we address the problem of sentiment analysis. More specifically, we are interested in analyzing the sentiment expressed in social media texts such as tweets or customer reviews about restaurant, laptop, hotel or the scholarly book reviews written by experts. We focus on two main tasks: sentiment polarity detection in which we aim to determine the polarity (positive, negative or neutral) of a given text and the opinion target extraction in which we aim to extract the targets that the people tend to express their opinions towards them (e.g. for restaurant we may extract targets as food, pizza, service).Our main objective is constructing state-of-the-art systems which could do the two tasks. Therefore, we have proposed different supervised systems following three research directions: improving the system performance by term weighting, by enriching the document representation and by proposing a new model for sentiment classification. For evaluation purpose, we have participated at an International Workshop on Semantic Evaluation (SemEval), we have chosen two tasks: Sentiment analysis in twitter in which we determine the polarity of a tweet and Aspect-Based sentiment analysis in which we extract the opinion targets in restaurant reviews, then we determine the polarity of each target. Our systems have been among the first three best systems in all subtasks. We also applied our systems on a French book reviews corpus constructed by OpenEdition team for extracting the opinion targets and their polarities
Moilanen, Karo. "Compositional entity-level sentiment analysis". Thesis, University of Oxford, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.559817.
Testo completoSaif, Hassan. "Semantic sentiment analysis of microblogs". Thesis, Open University, 2015. http://oro.open.ac.uk/44063/.
Testo completoLiu, Qiaoshan. "Sentiment analysis in social events". Thesis, Linnéuniversitetet, Institutionen för samhällsstudier (SS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-78077.
Testo completoPessato, Luca <1990>. "Social Media e Sentiment Analysis". Master's Degree Thesis, Università Ca' Foscari Venezia, 2016. http://hdl.handle.net/10579/9137.
Testo completoYADAV, DEEPIKA. "SENTIMENT ANALYSIS ON TWITTER DATA". Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2020. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18821.
Testo completoSvensson, Kristoffer. "Sentiment Analysis With Convolutional Neural Networks : Classifying sentiment in Swedish reviews". Thesis, Linnéuniversitetet, Institutionen för datavetenskap (DV), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-64768.
Testo completoSilva, Nadia Felix Felipe da. "Análise de sentimentos em textos curtos provenientes de redes sociais". Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-27092016-143947/.
Testo completoSentiment analysis is a field of study that shows recent popularization due to the growth of Internet and the content that is generated by its users. More recently, social networks have emerged, where people post their opinions in colloquial and compact language. This is what happens in Twitter, a communication tool that can easily be used as a source of information for various automatic tools of sentiment inference. Research efforts have been directed to deal with the problem of sentiment analysis in social networks from the point of view of a classification problem, where there is no consensus about what is the best classifier, and what is the best configuration provided by the feature engineering process. Another problem is that in a supervised setting, for the training stage of the classification model, we need labeled examples, which are hard to get in the most of applications. The objective of this thesis is to investigate the use of classifier ensembles, exploring the diversity and the potential of various supervised approaches when these work together, as well as to provide a study about the phase that precedes the choice of the classifier, which is known as feature engineering. In addition to these aspects, a study showing that unsupervised learning techniques can provide useful and additional constraints to improve the ability of generalization of the classifiers is also carried out. Based on the promising results got in supervised learning settings, an existing algorithm called C3E (Consensus between Classification and Clustering Ensembles) was adapted and extended for the semi-supervised setting. This algorithm refines the sentiment classification from additional information provided by clusters of data, in a self-training procedure. This approach shows promising results when compared with state of the art algorithms.
Vargas, Danny Suarez. "Detecting contrastive sentences for sentiment analysis". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/148304.
Testo completoContradiction Analysis is a relatively new multidisciplinary and complex area with the main goal of identifying contradictory pieces of text. It can be addressed from the perspectives of different research areas such as Natural Language Processing, Opinion Mining, Information Retrieval, and Information Extraction. This work focuses on the problem of detecting sentiment-based contradictions which occur in the sentences of a given review text. Unlike other types of contradictions, the detection of sentiment-based contradictions can be tackled as a post-processing step in the traditional sentiment analysis task. In this context, we make two main contributions. The first is an exploratory study of the classification task, in which we identify and use different tools and resources. Our second contribution is adapting and extending an existing contradiction analysis framework by filtering its results to remove the reviews that are erroneously labeled as contradictory. The filtering method is based on two simple term similarity algorithms. An experimental evaluation on real product reviews has shown proportional improvements of up to 30% in classification accuracy and 26% in the precision of contradiction detection.
Pak, Alexander. "Automatic, adaptive, and applicative sentiment analysis". Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00717329.
Testo completoDubois, Damien. "Sentiment analysis: Transferring knowledge across domains". Thesis, Fredericton: University of New Brunswick, 2012. http://hdl.handle.net/1882/44592.
Testo completoSerrano, Melissa. "Bilingual Sentiment Analysis of Spanglish Tweets". Thesis, Florida Atlantic University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10610508.
Testo completoSentiment Analysis has been researched in a variety of contexts but in this thesis, the focus is on sentiment analysis in Twitter, which poses its own unique challenges such as the use of slang, abbreviations, emoticons, hashtags, and user mentions. The 140-character restriction on the length of tweets can also lead to text that is difficult even for a human to determine its sentiment. Specifically, this study will analyze sentiment analysis of bilingual (U.S. English and Spanish language) Tweets. The hypothesis here is that Bilingual sentiment analysis is more accurate than sentiment analysis in a single language (English or Spanish) when analyzing bilingual tweets. In general, currently sentiment analysis in bilingual tweets is done against an English dictionary. For each of the test cases in this thesis’ experiment we will use the Python NLTK sentiment package.
Hu, Jerine, e Jerine Hu. "Sentiment Analysis on Social Media Platforms". Thesis, The University of Arizona, 2017. http://hdl.handle.net/10150/625009.
Testo completoLoreggia, Andrea. "Iterative Voting, Control and Sentiment Analysis". Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424803.
Testo completoNei sistemi multi agente spesso nasce la necessità di prendere decisioni collettive basate sulle preferenze dei singoli individui. A tal fine può essere utilizzata una regola di voto che, aggregando le preferenze dei singoli agenti, trovi una soluzione che rappresenti la collettività. In questi scenari la possibilità di agire in modo strategico può essere vista da due diversi e opposti punti di vista. Da una parte può essere desiderabile che gli agenti non abbiano alcun incentivo ad agire strategicamente, ovvero che gli agenti non abbiano incentivi a riportare in modo scorretto le proprie preferenze per influenzare il risultato dell'elezione a proprio favore, oppure che non agiscano sulla struttura del sistema elettorale stesso per cambiarne il risultato finale. D'altra parte l'azione strategica può essere utilizzata per migliorare la qualità del risultato o per incrementare il consenso del vincitore. Questi due diversi scenari sono studiati ed analizzati nella tesi. Il primo modellando e descrivendo una forma naturale di controllo chiamato "replacement control" descrivendo la complessità computazione di tale azione strategica per diverse regole di voto. Il secondo scenario è studiato nella forma dei sistemi di voto iterativi nei quali i singoli individui hanno la possibilità di cambiare le proprie preferenze al fine di influenzare il risultato dell'elezione. Le tecniche di Computational Social Choice inoltre possono essere usate in diverse situazioni. Il lavoro di tesi riporta un primo tentativo di introdurre l'uso di sistemi elettorali nel campo dell'analisi del sentimento. In questo contesto i ricercatori estraggono le opinioni della comunità riguardanti un particolare elemento di interesse. L'opinione collettiva è estratta aggregando le opinioni espresse dai singoli individui che discutono o parlano dell'elemento di interesse attraverso testi pubblicati in blog o social network. Il lavoro di tesi studia una nuova procedura di aggregazione proponendo una nuova variante di una regola di voto ben conosciuta qual è Borda. Tale nuova procedura di aggregazione migliora le performance dell'analisi del sentimento classica.
Mattila, Max, e Hassan Salman. "Analysing Social Media Marketing on Twitter using Sentiment Analysis". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229787.
Testo completoSociala medier är en allt viktigare marknadsföringsplattform i dagens samhälle, och många företag använder dem på ett eller annat sätt i sin marknadsföring. Syftet med denna studie är att genom attitydanalys undersöka hur ett antal faktorer inom marknadsföring på det sociala mediet Twitter påverkar responsen till den. Dessa faktorer var följande: inläggets tid, längd och attityd, samt förekomst av media i inlägget. Inläggen samlades från Twitter mellan 28. mars och 28. april och attityden i dem mättes genom attitydanalys, varpå attityden i svaren till reklaminläggen jämfördes baserat på de ovannämnda faktorerna. Resultaten visar på att attityden i reklaminläggen och tiden då de läggs upp har störst påverkan på hur svaren ser ut, men inga säkra slutsatser har kunnat dras.
Altrabsheh, Nabeela. "Sentiment analysis on students' real-time feedback". Thesis, University of Portsmouth, 2016. https://researchportal.port.ac.uk/portal/en/theses/sentiment-analysis-on-students-realtime-feedback(4675efcd-c784-44e1-9e2f-47f42d520f7b).html.
Testo completoNiu, Teng. "Sentiment Analysis on Multi-view Social Data". Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34218.
Testo completoRemus, Robert. "Genre and Domain Dependencies in Sentiment Analysis". Doctoral thesis, Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-165438.
Testo completoMukras, Rahman. "Representation and learning schemes for sentiment analysis". Thesis, Robert Gordon University, 2009. http://hdl.handle.net/10059/379.
Testo completoZhu, M. (Mo). "Sentiment analysis on medical treatment of depression". Master's thesis, University of Oulu, 2016. http://urn.fi/URN:NBN:fi:oulu-201611103002.
Testo completoChalorthorn, Tawunrat. "Quantitative assessment of factors in sentiment analysis". Thesis, Northumbria University, 2016. http://nrl.northumbria.ac.uk/30233/.
Testo completoZhang, Jun. "Sentiment analysis of movie reviews in Chinese". Thesis, Uppsala universitet, Institutionen för lingvistik och filologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-412670.
Testo completoDi, Bari Marilena. "Improving multilingual sentiment analysis using linguistic knowledge". Thesis, University of Leeds, 2015. http://etheses.whiterose.ac.uk/11883/.
Testo completoZimbra, David. "Stakeholder and Sentiment Analysis in Web Forums". Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/222894.
Testo completoXue, Wei. "Aspect Based Sentiment Analysis On Review Data". FIU Digital Commons, 2017. https://digitalcommons.fiu.edu/etd/3721.
Testo completoCAPUA, M. DI. "A DEEP LEARNING APPROACH FOR SENTIMENT ANALYSIS". Doctoral thesis, Università degli Studi di Milano, 2017. http://hdl.handle.net/2434/467844.
Testo completoSentiment Analysis refers to the process of computationally identifying and categorizing opinions expressed in a piece of text, in order to determine whether the writer’s attitude towards a particular topic or product is positive, negative, or even neutral. The views expressed and its related concepts, such as feelings, judgments, and emotions have become recently a subject of study and research in both academic and industrial areas. Unfortunately language comprehension of user comments, especially in social networks, is inherently complex to computers. The ways in which humans express themselves with natural language are nearly unlimited and informal texts is riddled with typos, misspellings, badly set up syntactic constructions and also specific symbols (e.g. hashtags in Twitter) which exponentially complicate this task. Recently, deep learning approaches are emerging as powerful computational models that discover intricate semantic representations of texts automatically from data without hand-made feature engineering. These approaches have improved the state-of-the-art in many Sentiment Analysis tasks including sentiment classification of sentences or documents, sentiment lexicon learning and also in more complex problems as cyber bullying detection. The contributions of this work are twofold. First, related to the general Sentiment Analysis problem, we propose a semi-supervised neural network model, based on Deep Belief Networks, able to deal with data uncertainty for text sentences in Italian language. We test this model against some datasets from literature related to movie reviews, adopting a vectorized representation of text (Word2Vec) and exploiting methods from Natural Language Processing (NLP) pre-processing. Second, assuming that the cyber bullying phenomenon can be treated as a particular Sentiment Analysis problem, we propose an unsupervised approach to automatic cyber bullying detection in social networks, based both on Growing Hierarchical Self Organizing Map (GHSOM) and on a new specific features model, showing that our solution can achieve interesting results, respect to classical supervised approaches.
Johansson, Henrik, e Anton Lilja. "Method performance difference of sentiment analysis on social media databases : Sentiment classification in social media". Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-187259.
Testo completoDen explosion av tillgänglig data i och med den ökade an- vändningen av sociala medier har ökat intresset för att göra sentimentsanalys. Men eftersom källan och innehållet för den data som analyseras har förändrats är det möjligt att de metoder som används kommer att prestera annorlunda. Syftet med denna studie är att undersöka om en sådan skill- nad finns och om metodernas trä säkerhet kan ökas genom att förarbeta data. Resultatet visar att det finns en skillnad och att en lexikal analys kan vara ett bättre tillvägagångs- sätt än en metod baserad på maskininlärning. Att förarbeta data visar viss men inte i sammanhanget stor förbättring av resultatet.
LYSEDAL, TOMAS. "Sentiment analysis of Swedish social media : Using random indexing to improve cross-domain sentiment classification". Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-156249.
Testo completoHaider, Syed Zeeshan. "AN ONTOLOGY BASED SENTIMENT ANALYSIS : A Case Study". Thesis, Högskolan i Skövde, Institutionen för kommunikation och information, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-6387.
Testo completoDuarte, Eduardo Santos. "Sentiment analysis on twitter for the portuguese language". Master's thesis, Faculdade de Ciências e Tecnologia, 2013. http://hdl.handle.net/10362/11338.
Testo completoWith the growth and popularity of the internet and more specifically of social networks, users can more easily share their thoughts, insights and experiences with others. Messages shared via social networks provide useful information for several applications, such as monitoring specific targets for sentiment or comparing the public sentiment on several targets, avoiding the traditional marketing research method with the use of surveys to explicitly get the public opinion. To extract information from the large amounts of messages that are shared, it is best to use an automated program to process these messages. Sentiment analysis is an automated process to determine the sentiment expressed in natural language in text. Sentiment is a broad term, but here we are focussed in opinions and emotions that are expressed in text. Nowadays, out of the existing social network websites, Twitter is considered the best one for this kind of analysis. Twitter allows users to share their opinion on several topics and entities, by means of short messages. The messages may be malformed and contain spelling errors, therefore some treatment of the text may be necessary before the analysis, such as spell checks. To know what the message is focusing on it is necessary to find these entities on the text such as people, locations, organizations, products, etc. and then analyse the rest of the text and obtain what is said about that specific entity. With the analysis of several messages, we can have a general idea on what the public thinks regarding many different entities. It is our goal to extract as much information concerning different entities from tweets in the Portuguese language. Here it is shown different techniques that may be used as well as examples and results on state-of-the-art related work. Using a semantic approach, from these messages we were able to find and extract named entities and assigning sentiment values for each found entity, producing a complete tool competitive with existing solutions. The sentiment classification and assigning to entities is based on the grammatical construction of the message. These results are then used to be viewed by the user in real time or stored to be viewed latter. This analysis provides ways to view and compare the public sentiment regarding these entities, showing the favourite brands, companies and people, as well as showing the growth of the sentiment over time.
Muhammad, Aminu. "Contextual lexicon-based sentiment analysis for social media". Thesis, Robert Gordon University, 2016. http://hdl.handle.net/10059/1571.
Testo completoBarnes, Jeremy. "Cross-lingual sentiment analysis for under-resourced languages". Doctoral thesis, Universitat Pompeu Fabra, 2019. http://hdl.handle.net/10803/665480.
Testo completoL’anàlisi de sentiment és una tasca que ens permet calcular la polaritat de un text de manera automàtica. Mentre algunes llengües, com l’anglès per exemple, tenen una àmplia varietat de recursos per crear sistemes d’anàlisi de sentiment, n’hi ha més que els troben a faltar. L’Anàlisi de Sentiment Cross-lingüe (ASCL) intenta fer servir els recursos de llengües riques en recursos per crear o millorar sistemes d’anàlisi de sentiment en llengües pobres en recursos. A aquesta tesi proposem mètodes d’anàlisi de sentiment cross-lingües que requereixen menys data paral·lela i treuen el màxim profit de data monolingüe que tenim a l’abast. Proposem un model que optimitza les representacions distribucionals cross-lingües perquè tinguin informació semàntica i també de sentiment, i que demostra ser l’estat de l’art en combinant-se amb traducció automàtica. Després passem a un nivell de granularitat més fina i examinem com canvia el rendiment dels models amb diferents llengües metes i dominis. Finalment, demostrem que aquestes tècniques també són adequats per a l’adaptació de domini.
Dettori, Emilio. "Sentiment Analysis per la moderazione di una community". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Cerca il testo completoTramontano, Matteo. "sentiment analysis: previsione con tecniche di intelligenza artificiale". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20387/.
Testo completoTorchi, Andrea. "Sperimentazioni per "Sentiment Analysis" tramite Reti Neurali Profonde". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Cerca il testo completoZiegelmayer, Dominique [Verfasser]. "Character n-gram-based sentiment analysis / Dominique Ziegelmayer". München : Verlag Dr. Hut, 2015. http://d-nb.info/1060587688/34.
Testo completoStenqvist, Evita, e Jacob Lönnö. "Predicting Bitcoin price fluctuation with Twitter sentiment analysis". Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209191.
Testo completoÄmnet sentiment analysis, att programmatiskt härleda underliggande känslor i text, ligger som grund för många avhandlingar: hur det tillämpas bäst på 140 teckens meningar såväl som på 400-ords meningar a’la Hemingway, metoderna sträcker sig ifrån naiva, regelbaserade, till neurala nätverk. Givetvis sträcker sig intresset för sentiment analys utanför forskningsvärlden för att ta fram insikter i en rad branscher, men framförallt i digital marknadsföring och financiell analys. Sedan början på året har den digitala valutan Bitcoin stigit trefaldigt i sökningar på Google, likt priset på valutan. Då Bitcoins decentraliserade design är helt transparant och oreglerad, verkar den under ideala marknadsekonomiska förutsättningar. På så vis regleras Bitcoins monetära värde av marknadens uppfattning av värdet. Denna avhandling tittar på hur offentliga uppfattningar påverkar Bitcoins pris. Genom att analysera 2,27 miljoner Bitcoin-relaterade tweets för sentiment ändringar, föutspåddes ändringar i Bitcoins pris under begränsade förhållningar. Priset förespåddes att gå upp eller ner beroende på graden av sentiment ändring under en tidsperiod, de testade tidsperioderna låg emellan 5 minuter till 4 timmar. Om en förutspånning görs för en tidsperiod, prövas den emot 1, 2, 3 och 4 skiftningar framåt i tiden för att ange förutspådd Bitcoin pris interval. Utvärderingen av förutspåningar visade att aggregerade tweet-sentiment över en 30-minutersperiod med 4 skift framåt och ett tröskelvärde för förändring av sentimentet på 2,2 % gav ett resultat med 79 % noggrannhet.
Wang, Szu-Hung, e 王斯泓. "Sentiment-Guided Attention Mechanism for Sentiment Analysis". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/vz6j9g.
Testo completo國立臺灣大學
資訊網路與多媒體研究所
107
Sentiment analysis is an important task, which extracts sentiment, emotion or affect in text. The problem is often treated as a classification problem for which deep neural methods have been well explored and attention mechanisms have generated promising performance. Studies have shown that lexicon is highly effective for sentiment analysis. However, lexicon has not been fully utilized by the previous methods. No existing method integrates lexicon into the attention mechanism effectively to solve the problem. This thesis explores the sentiment-guided attention mechanism, which integrates lexicon into attention mechanism and proposes two approaches. First, to utilize sentiment lexicons, we transform lexicon values into guiding weights to minimize the error of attention weights. Second, we propose sentiment multi-head attention to help the model jointly attend to sentiment information provided by the transformed lexicon values. Experiments show that our models outperform state-of-the-art models on six sentiment analysis benchmarks with improved accuracy of 0.12% to 8.12%.
Tavares, Cátia Daniela Lopes. "Sentiment analysis to predict the Portuguese economic sentiment based on economic news". Master's thesis, 2021. http://hdl.handle.net/10071/24130.
Testo completoMedir o sentimento económico de um país é crucial para compreender e prever a sua condição económica de curto prazo. Este projeto propõe um indicador de sentimento automático, baseado em textos recolhidos de notícias económicas, que é capaz de medir com precisão o sentimento económico atual em Portugal e está altamente correlacionado com o Indicador de Sentimento Económico oficial, publicado pela Comissão Europeia algumas semanas depois e calculado com base em inquéritos. Os dados utilizados nestas experiências consistem em cerca de 90 mil notícias económicas portuguesas, extraídas de dois jornais portugueses de renome, abrangendo o período de 2010 a 2020. Cada notícia foi automaticamente classificada com a polaridade de sentimento que tem associada, através de uma abordagem baseada em regras que provou ser adequada para detectar o sentimento das notícias económicas portuguesas. Para realizar a análise de sentimento das notícias económicas, também avaliámos a adaptação de módulos prétreinados existentes e realizamos experiências com um conjunto de abordagens de Aprendizagem Automática. Resultados experimentais mostram que a nossa abordagem baseada em regras, que usa regras escritas manualmente específicas para o contexto económico, alcança os melhores resultados para detectar automaticamente a polaridade das notícias económicas, superando amplamente as outras abordagens. O nosso estudo mostra que o sentimento expresso através das notícias económicas constitui uma forma promissora de prever o sentimento económico, permitindo entender a situação económica em Portugal quase em tempo real. O indicador desenvolvido, com base nas notícias, tem poder preditivo das flutuações económicas e do sentimento dos agentes económicos acerca do presente e o futuro da economia.
Coelho, Pedro Samuel Amaro. "Multi-Topic Sentiment Analysis". Master's thesis, 2013. https://repositorio-aberto.up.pt/handle/10216/69498.
Testo completo