Indice
Letteratura scientifica selezionata sul tema "Smarta elnät"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Smarta elnät".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Smarta elnät"
Lin, Cheng-Jian, Chun-Hui Lin e Shyh-Hau Wang. "Integrated Image Sensor and Light Convolutional Neural Network for Image Classification". Mathematical Problems in Engineering 2021 (16 marzo 2021): 1–7. http://dx.doi.org/10.1155/2021/5573031.
Testo completoTesi sul tema "Smarta elnät"
Vallé, Troy. "Smarta elnät eller smarta användare? : En studie om användarens roll vid planering, utveckling och användning av smarta elnät". Thesis, Linköpings universitet, Filosofiska fakulteten, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-129297.
Testo completoSmarta elnät och tjänsteutveckling för hemmet – vem är i behov av en smartare vardag?
Svedberg, Sebastian. "Framtidens smartare elnät - en beskrivning av smarta elnät och dynamic rating". Thesis, KTH, Elektroteknisk teori och konstruktion, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-152525.
Testo completoSmart Grid is one of the solutions to achieve the European Union climate targets, "the 20-20-20- targets". These targets include e.g. higher energy-production from renewable sources and increased energy efficiency. The purpose of these targets is to prevent global warming in order to achieve a better and more sustainable future. The weakness with electric energy is the limited possibility of effective and large-scale storage. With solar power plants and wind power plants, the energy will only be produced under favorable weather conditions. By using Smart Grid the energy consumption, the energy production and the grid can be controlled in a higher scale than today. This will be done by advanced information- and control-technology which will gather and act on information from suppliers and consumers and then act upon the "smartest" alternative. According to the power industry several energy storage units must be built due to store the energy in terms of maximize the benefits of renewable energy during windy or sunny weather, when renewable energy is produced as its best. Some experts in the field believe that electric cars or industries could be possible energy storage units. Another advantage with Smart Grid is the ability for consumers to produce their own electric energy and sell the surplus to the energy market. Dynamic Rating is an important part of the implementation of Smart Grid and can best be described with the words "increasing the level of utilization". By using sensors, information should be measured in real time to maximize the utilization rate of the energy production, the energy consumption and the grid. Today, Vectura's mission in electricity infrastructure is largely focused on rail infrastructure. Now, they have a desire to extend their business in the field of electrical engineering, e.g. Smart Grid and Dynamic Rating. If Vectura will be able to start work on Smart Grids and Dynamic Rating in order to expand their business, training for its consultants is recommended in these areas: energy storage, sensors and renewable energy. Hydro power, wind power and solar power are the main renewable energy sources in the Swedish electricity market.
Hedberg, Peter, e Kiah Boriri. "Smarta elnät i Sverige : En analys kring statens mål och påverkan på marknaden för smarta elnät". Thesis, Uppsala universitet, Företagsekonomiska institutionen, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-183664.
Testo completoLidén, Emma, e Stefan Bengtlars. "Risk- och sårbarhetsanalyser för smarta elnät". Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-173711.
Testo completoSvanberg, Eva, e Sofia Persson. "Elmätarens roll i framtidens elnät : Ett samarbete med Sweco Energuide AB och Mälarenergi Elnät AB". Thesis, Uppsala universitet, Industriell teknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-223226.
Testo completoEkström, Rasmus. "Smarta Elnät – En utredning : En utredning kring hur ett mindre energibolag kan utveckla sitt elnät till det smartare". Thesis, Mittuniversitetet, Avdelningen för elektronikkonstruktion, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-34296.
Testo completoElnätsbranschen står på många punkter inför en händelserik framtid där mycket kommer att hända på kort tid. Många nätägare står idag med ett nät som är något föråldrat och inom kort i behov av en upprustning och modernisering, en modernisering mot ett smartare elnät. I takt med att regeringen ställer nya krav på framtidens elmätare så ställs Sveriges nätägare inför en hel del andra krav och utmaningar man måste ta itu med. I Detta arbete så undersöks definitionen av smarta elnät och hur en mindre elnätsägare bör prioritera sina investeringar och utvecklingar i sitt elnät i den närmaste framtiden.
Simm, Lindbäck Johan. "Smarta elnät i Sverige : Energibranschens förutsättningar och förväntningar". Thesis, Uppsala universitet, Industriell teknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-176646.
Testo completoRydman, Allan. "Sammanställning och fördjupning av begreppet Smarta elnät: En litteraturstudie". Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-90352.
Testo completoCurrently the world has a steadily growing population and therefore steadily growing need of energy. With a growing need of energy, discussions regarding society’s sustainability and environmental impact have risen. At the same time modern technology has resulted in society being more dependent on a constant power supply than ever before. Technological advances, together with the desire to become a more sustainable society with high availability of power, have yielded a concept known as the smart grid. Due to the power grid being a huge industry there’s a divided perception regarding what a smart grid constitutes. This has resulted in the appearance of different definitions and models of the concept. Therefore a literary study was done with the purpose of creating an overall perception of the main aspects of the smart grid. To create this overview a proposed definition has been developed that describes the smart grid as mainly sustainable and available. The smart grid is the next step of the power grid’s ongoing development in response to society’s increasing reliability of a constant power supply and the wish for decreasing man’s environmental impact. With cost efficient technical solutions, efficient technology and economic forces the goal is to promote introduction of additional renewable electricity production, increased electricity utilization and a more efficient use of the power grid – a power grid with low losses, high power quality and availability with end-users that are more aware and involved in their power consumption than before. Based on this definition the smart grid can be summarized as two main interests for society – sustainability and a higher reliability. In the future the power grid is expected to cope with an increased introduction of renewable electricity production and an increased use of electrical applications. It has been concluded that the grid capacity has to increase in order to meet these expectations. It’s been shown that an increase in grid capacity can be achieved through technical solutions as energy storage and more efficient electrical components but also through non-technical solutions as political forces and incentives for end-users to lower their peak consumption and overall electricity consumption through demand response. At present there are no clear incentives for this and it’s considered that there is a need for reform of certain parts of the electricity market to promote the development towards a sustainable smart grid. The power grid is also expected to supply end-users with a higher power quality and reliability. The power grid of today consists of long lived and, in many cases, old components and investments in modern protection systems and communication networks are required in due time to meet new expectations. In addition, the smart grid is expected to include different types of communication network within protection systems, monitoring and metering. Information was therefore summarized regarding relevant communication protocols, media and networks where different properties are suitable for different applications.
Berggren, Andreas, e Markus Eriksson. "Distribuerade Kontrollsystem för Smarta Elnät Baserat på Raspberry Pi". Thesis, KTH, Skolan för teknikvetenskap (SCI), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-125884.
Testo completoSmed, Johan. "Lokal effekttoppsreduktion med elbilar - En del av framtidens smarta elnät?" Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-135873.
Testo completoDue to climate targets setup by Sweden to address climate change, the share of intermittent electricity generation is expected to increase, especially solar and wind power. In order to avoid expensive investments and capacity enhancement, due to uneven electricity production, it is important that the already existing power grid is efficient and utilized in a smart way. A larger proportion of renewable electricity generation is not the only change that affects the Swedish electricity system. The number of battery electric vehicles (BEV) in the Swedish car fleet is constantly increasing and as an important part of achieving national targets it is both likely and desirable that it continues. BEVs also carry other potential uses than transport. Due to the battery’s storage capacity, electricity can be stored during charging but also returned later to the grid using Vehicle-to-Grid technology. This means that the BEV can have secondary applications, which can contribute to and be part of, the future power grid. The purpose of this study has been to study local power reduction with help of battery electric vehicles ability to recharge electricity to the property when power need is high. The work will furthermore answer the financial incentives that may arise at a local level and how the potential is for BEVs to be an active part of a smart grid. To investigate the potential of the BEVs power reduction, the power need for the 755 apartments in the area of Lilljansberget in Umeå for 2016 has been used. A model was then developed in Excel software, the purpose of which was to simulate how the discharges from BEVs, after last arrival time of the day, over a year’s time, affect the new power usage for the area. Since the model in Excel is intended to correspond to actual conditions, parameters related to electric cars, charging and discharging have been determined and applied. The reduction was then optimized with the plug-in program What’s Best! whereby a new maximum usage for the area could be determined. The optimization has been done on a monthly and annual basis and with 3.6 and 6.6 kW discharge effects. Furthermore, scenarios have been investigated claiming that the proportion of BEVs corresponds to 10, 20 and 30% of the area’s car fleet. The work shows that driving pattern for cars correlates well with high power peaks, which is reinforced by the results that show that a reduction is possible for most scenarios around 100 kW, corresponding to approximately 25% of the area’s previous maximum power need. The reduction further indicates potential for profitability, as revenue, based on power tariffs, exceeds the degeneration costs of batteries regardless of the scenario and time span for optimization. The most profitable power reduction occurs on an annual basis with 20% BEVs, with an annual revenue of approximately 37,000 SEK, including degeneration costs of the battery. Revenue distributed on participating BEVs is between 700 - 1400 SEK per year. In order to reflect the results of the work in reality, a locally installed battery should also be in place to better guarantee reduction as temporary changes to available BEVs or power usage arise. A major reduction in power has proven to be both possible but also directly profitable. On the other hand, revenues, based on costs for power tariffs, are considered to be too low in relation to expenses and remuneration, which makes such an investment difficult to motivate. Continued work on further valuation of power reduction is needed to provide answers to financial compensation that may be applicable. The local power reduction studied in this work greatly changes the power demand for the area but the impact on the grid remains largely small. Therefore, it is concluded that local power reduction with battery electric vehicles is not a solution to the future electrical system, but can at local level, contribute to a smart grid.