Letteratura scientifica selezionata sul tema "Soft classification"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Soft classification".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Soft classification"
Villandré, Luc, Benjamin Rich e Antonio Ciampi. "Soft Classification Trees". Communications in Statistics - Theory and Methods 41, n. 16-17 (agosto 2012): 3244–58. http://dx.doi.org/10.1080/03610926.2011.632103.
Testo completoSambu Seo, M. Bode e K. Obermayer. "Soft nearest prototype classification". IEEE Transactions on Neural Networks 14, n. 2 (marzo 2003): 390–98. http://dx.doi.org/10.1109/tnn.2003.809407.
Testo completoBonatz, Ekkehard, e Jorge E. Alonso. "Classification of Soft-Tissue Injuries". Techniques in Orthopaedics 10, n. 2 (1995): 73–78. http://dx.doi.org/10.1097/00013611-199501020-00003.
Testo completoIbrahim, David A., Alan Swenson, Adam Sassoon e Navin D. Fernando. "Classifications In Brief: The Tscherne Classification of Soft Tissue Injury". Clinical Orthopaedics and Related Research® 475, n. 2 (14 luglio 2016): 560–64. http://dx.doi.org/10.1007/s11999-016-4980-3.
Testo completoAllison, Peter A. "Konservat-Lagerstätten:cause and classification". Paleobiology 14, n. 4 (1988): 331–44. http://dx.doi.org/10.1017/s0094837300012082.
Testo completoJaiswal, Tarun, Dr S. Jaiswal e Dr Ragini Shukla. "Soft Computing Techniques Based Image Classification using Support Vector Machine Performance". International Journal of Trend in Scientific Research and Development Volume-3, Issue-3 (30 aprile 2019): 1645–50. http://dx.doi.org/10.31142/ijtsrd23437.
Testo completoMandal, Sudip, Goutam Saha e Rajat K. Pal. "A Comparative Study on Disease Classification using Different Soft Computing Techniques". SIJ Transactions on Computer Science Engineering & its Applications (CSEA) 02, n. 04 (8 agosto 2014): 22–29. http://dx.doi.org/10.9756/sijcsea/v2i4/0203110201.
Testo completoMackay, Bruce. "Ultrastructural Classification of Soft Tissue Neoplasms". Ultrastructural Pathology 9, n. 3-4 (gennaio 1985): 179. http://dx.doi.org/10.3109/01913128509074571.
Testo completoGómez, D., G. Biging e J. Montero. "Accuracy statistics for judging soft classification". International Journal of Remote Sensing 29, n. 3 (21 dicembre 2007): 693–709. http://dx.doi.org/10.1080/01431160701311325.
Testo completoRoverso, Davide. "Soft computing tools for transient classification". Information Sciences 127, n. 3-4 (agosto 2000): 137–56. http://dx.doi.org/10.1016/s0020-0255(00)00035-9.
Testo completoTesi sul tema "Soft classification"
Phillips, Rhonda D. "A Probabilistic Classification Algorithm With Soft Classification Output". Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/26701.
Testo completoPh. D.
Stolpmann, Alexander. "An intelligent soft-computing texture classification system". Thesis, University of South Wales, 2005. https://pure.southwales.ac.uk/en/studentthesis/an-intelligent-softcomputing-texture-classification-system(a43eb831-a799-438b-9112-3ce1df432fe9).html.
Testo completoDoan, Huong Thi Xuan. "Soft classification and land cover mapping from remotely sensed imagery". Thesis, University of Southampton, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.439513.
Testo completoXia, Baiqiang. "Learning 3D geometric features for soft-biometrics recognition". Thesis, Lille 1, 2014. http://www.theses.fr/2014LIL10132/document.
Testo completoSoft-Biometric (gender, age, etc.) recognition has shown growingapplications in different domains. Previous 2D face based studies aresensitive to illumination and pose changes, and insufficient to representthe facial morphology. To overcome these problems, this thesis employsthe 3D face in Soft-Biometric recognition. Based on a Riemannian shapeanalysis of facial radial curves, four types of Dense Scalar Field (DSF) featuresare proposed, which represent the Averageness, the Symmetry, theglobal Spatiality and the local Gradient of 3D face. Experiments with RandomForest on the 3D FRGCv2 dataset demonstrate the effectiveness ofthe proposed features in Soft-Biometric recognition. Furtherly, we demonstratethe correlations of Soft-Biometrics are useful in the recognition. Tothe best of our knowledge, this is the first work which studies age estimation,and the correlations of Soft-Biometrics, using 3D face
Siddiqui, Mujahuddin M., Shaikh M. Mobin, Irena Senkovska, Stefan Kaskel e Maravanji S. Balakrishna. "Novel zeotype frameworks with soft cyclodiphosphazane linkers and soft Cu₄X₄ clusters as nodes". Royal Society of Chemistry, 2014. https://tud.qucosa.de/id/qucosa%3A36036.
Testo completoFröhner, Michael, e Manfred P. Wirth. "Etiologic Factors in Soft Tissue Sarcomas". Karger, 2001. https://tud.qucosa.de/id/qucosa%3A27622.
Testo completoWeichteilsarkome stellen etwa 1% aller bösartigen Neubildungen. Der in den vergangenen Jahrzehnten beobachtete Inzidenzanstieg geht fast ausschließlich auf die rasante Zunahme an AIDS-assoziierten Kaposi-Sarkomen zurück. Bei Außerachtlassung dieses Tumors gibt es bisher keinen schlüssigen Beweis für eine wirkliche alterskorrigierte Häufigkeitszunahme der Weichteilsarkome. Neben der gut untersuchten Rolle des HIV-1-Virus und des humanen Herpes-Virus 8 bei der Entstehung des AIDS-assoziierten Kaposi-Sarkoms und einigen prädisponierenden genetischen Erkrankungen existieren starke Hinweise für einen Zusammenhang zwischen Industriegiften wie Vinylchlorid, Phenoxyessigsäure-Herbiziden, Chlorphenolen, Dioxinen, medizinischen Maßnahmen wie therapeutischer Bestrahlung oder dem Einsatz von Thorotrast, und der Entwicklung von Weichteilsarkomen. Hormone und chronische Reparaturprozesse sind weitere wahrscheinlich fördernde Einflüsse auf die Entstehung von Weichteilsarkomen. Die Tatsache, daß trotz des großen Anteils, den die Binde- und Stützgewebe an der Körpermasse stellen, nur selten maligne Tumoren von diesen Strukturen ausgehen, läßt hoffen, daß ein besseres Verständnis der an der Kanzerogenese von Weichteilsarkomen beteiligten Mechanismen in der Zukunft wichtige Erkenntnisse über die Entstehung menschlicher Tumoren liefern kann.
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Henke, E. F. Markus, Katherine E. Wilson e Iain A. Anderson. "Entirely soft dielectric elastomer robots". SPIE, 2017. https://tud.qucosa.de/id/qucosa%3A35126.
Testo completoAlorf, Abdulaziz Abdullah. "Primary/Soft Biometrics: Performance Evaluation and Novel Real-Time Classifiers". Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/96942.
Testo completoDoctor of Philosophy
The relevance of faces in our daily lives is indisputable. We learn to recognize faces as newborns, and faces play a major role in interpersonal communication. Faces probably represent the most accurate biometric trait in our daily interactions. Thereby, it is not singular that so much effort from computer vision researchers have been invested in the analysis of faces. The automatic detection and analysis of faces within images has therefore received much attention in recent years. The spectrum of computer vision research about face analysis includes, but is not limited to, face detection and facial attribute classification, which are the focus of this dissertation. The face is a primary biometric because by itself revels the subject's identity, while facial attributes (such as hair color and eye state) are soft biometrics because by themselves they do not reveal the subject's identity. Soft biometrics have many uses in the field of biometrics such as (1) they can be utilized in a fusion framework to strengthen the performance of a primary biometric system. For example, fusing a face with voice accent information can boost the performance of the face recognition. (2) They also can be used to create qualitative descriptions about a person, such as being an "old bald male wearing a necktie and eyeglasses." Face detection and facial attribute classification are not easy problems because of many factors, such as image orientation, pose variation, clutter, facial expressions, occlusion, and illumination, among others. In this dissertation, we introduced novel techniques to classify more than 40 facial attributes in real-time. Our techniques followed the general facial attribute classification pipeline, which begins by detecting a face and ends by classifying facial attributes. We also introduced a new facial attribute related to Middle Eastern headwear along with its detector. The new facial attribute were fused with a face detector to improve the detection performance. In addition, we proposed a new method to evaluate the robustness of face detection, which is the first process in the facial attribute classification pipeline. Detecting the states of human facial attributes in real time is highly desired by many applications. For example, the real-time detection of a driver's eye state (open/closed) can prevent severe accidents. These systems are usually called driver drowsiness detection systems. For classifying 40 facial attributes, we proposed a real-time model that preprocesses faces by localizing facial landmarks to normalize faces, and then crop them based on the intended attribute. The face was cropped only if the intended attribute is inside the face region. After that, 7 types of classical and deep features were extracted from the preprocessed faces. Lastly, these 7 types of feature sets were fused together to train three different classifiers. Our proposed model yielded 91.93% on the average accuracy outperforming 7 state-of-the-art models. It also achieved state-of-the-art performance in classifying 14 out of 40 attributes. We also developed a real-time model that classifies the states of three human facial attributes: (1) eyes (open/closed), (2) mouth (open/closed), and (3) eyeglasses (present/absent). Our proposed method consisted of six main steps: (1) In the beginning, we detected the human face. (2) Then we extracted the facial landmarks. (3) Thereafter, we normalized the face, based on the eye location, to the full frontal view. (4) We then extracted the regions of interest (i.e., the regions of the mouth, left eye, right eye, and eyeglasses). (5) We extracted low-level features from each region and then described them. (6) Finally, we learned a binary classifier for each attribute to classify it using the extracted features. Our developed model achieved 30 FPS with a CPU-only implementation, and our eye-state classifier achieved the top performance, while our mouth-state and glasses classifiers were tied as the top performers with deep learning classifiers. We also introduced a new facial attribute related to Middle Eastern headwear along with its detector. After that, we fused it with a face detector to improve the detection performance. The traditional Middle Eastern headwear that men usually wear consists of two parts: (1) the shemagh or keffiyeh, which is a scarf that covers the head and usually has checkered and pure white patterns, and (2) the igal, which is a band or cord worn on top of the shemagh to hold it in place. The shemagh causes many unwanted effects on the face; for example, it usually occludes some parts of the face and adds dark shadows, especially near the eyes. These effects substantially degrade the performance of face detection. To improve the detection of people who wear the traditional Middle Eastern headwear, we developed a model that can be used as a head detector or combined with current face detectors to improve their performance. Our igal detector consists of two main steps: (1) learning a binary classifier to detect the igal and (2) refining the classier by removing false positives. Due to the similarity in real-life applications, we compared the igal detector with state-of-the-art face detectors, where the igal detector significantly outperformed the face detectors with the lowest false positives. We also fused the igal detector with a face detector to improve the detection performance. Face detection is the first process in any facial attribute classification pipeline. As a result, we reported a novel study that evaluates the robustness of current face detectors based on: (1) diffraction blur, (2) image scale, and (3) the IoU classification threshold. This study would enable users to pick the robust face detector for their intended applications. Biometric systems that use face detection suffer from huge performance fluctuation. For example, users of biometric surveillance systems that utilize face detection sometimes notice that state-of-the-art face detectors do not show good performance compared with outdated detectors. Although state-of-the-art face detectors are designed to work in the wild (i.e., no need to retrain, revalidate, and retest), they still heavily depend on the datasets they originally trained on. This condition in turn leads to variation in the detectors' performance when they are applied on a different dataset or environment. To overcome this problem, we developed a novel optics-based blur simulator that automatically introduces the diffraction blur at different image scales/magnifications. Then we evaluated different face detectors on the output images using different IoU thresholds. Users, in the beginning, choose their own values for these three settings and then run our model to produce the efficient face detector under the selected settings. That means our proposed model would enable users of biometric systems to pick the efficient face detector based on their system setup. Our results showed that sometimes outdated face detectors outperform state-of-the-art ones under certain settings and vice versa.
Vasenkov, Sergey. "Structure-Transport relationship in organized soft matter systems by diffusion NMR". Diffusion fundamentals 16 (2011) 22, S. 1-2, 2011. https://ul.qucosa.de/id/qucosa%3A13754.
Testo completoHazelbaker, Eric, Aakanksha Katihar, Monica Sanders, Amrish Menjoge e Sergey Vasenkov. "Structure-Transport relationship in organized soft matter systems by diffusion NMR". Diffusion fundamentals 16 (2011) 82, S. 1-10, 2011. https://ul.qucosa.de/id/qucosa%3A13827.
Testo completoLibri sul tema "Soft classification"
Ray, Kumar S. Soft Computing Approach to Pattern Classification and Object Recognition. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5348-2.
Testo completoH, Sobin L., e Enzinger Franz M, a cura di. Histological typing of soft tissue tumours. 2a ed. Berlin: Springer-Verlag, 1994.
Cerca il testo completoRutkowski, Leszek. New Soft Computing Techniques for System Modeling, Pattern Classification and Image Processing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
Cerca il testo completoRutkowski, Leszek. New Soft Computing Techniques for System Modeling, Pattern Classification and Image Processing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-40046-2.
Testo completoservice), SpringerLink (Online, a cura di. Soft Computing Approach to Pattern Classification and Object Recognition: A Unified Concept. New York, NY: Springer New York, 2012.
Cerca il testo completoWorld Health Organization (WHO). Pathology And Genetics of Tumours of the Soft Tissues And Bones: World Health Organization Classification of Tumours. LYON, FRANCE: The International Agency for Research on Cancer, 2003.
Cerca il testo completoBen-Dov, Yair. A systematic catalogue of the soft scale insects of the world (Homoptera:Coccoidea:Coccidae): With data on geographical distribution, host plants, biology, and economics importance. Gainesville, Fla: Sandhill Crane Press, 1993.
Cerca il testo completoBuchbinder, Rachelle. The classification of soft tissue disorders of the neck and upper limb for epidemiological research. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1993.
Cerca il testo completoCarthy, Joseph Noel. A database package to sort, search and statistically analyse and plot landuse/classification data. [s.l: The Author], 1988.
Cerca il testo completoDescartes, René. Discours de la méthode: Pour bien conduire sa raison, & chercher la vérité dans les sciences ; Plus, La Dioptrique ; Les Météores ; et, La Géométrie ; qui sont des essais de cette méthode. Lecce: Università degli Studi di Lecce, Dipartimento di Filosofia, 1987.
Cerca il testo completoCapitoli di libri sul tema "Soft classification"
Kołakowska, Agata, e Witold Malina. "Sequential Classification". In Neural Networks and Soft Computing, 430–35. Heidelberg: Physica-Verlag HD, 2003. http://dx.doi.org/10.1007/978-3-7908-1902-1_65.
Testo completoRotaru, Florin, Silviu-Ioan Bejinariu, Cristina Diana Niţă, Ramona Luca, Mihaela Luca e Adrian Ciobanu. "Retinal Vessel Classification Technique". In Soft Computing Applications, 498–514. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62524-9_37.
Testo completoZhang, Yingze, e Xin Xing. "Classifications of Soft-Tissue Injuries". In Clinical Classification in Orthopaedics Trauma, 635–38. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6044-1_13.
Testo completoLee, Won Ki, e Dae Yul Yang. "Classification of Soft Tissue Filler". In Penile Augmentation, 71–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-46753-4_10.
Testo completoBalachander, Thiagarajan, e Ravi Kothari. "Localized Soft Subspace Pattern Classification". In International Conference on Advances in Pattern Recognition, 365–74. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-0833-7_37.
Testo completoNowicki, Robert, e Leszek Rutkowski. "Soft Techniques for Bayesian Classification". In Neural Networks and Soft Computing, 537–44. Heidelberg: Physica-Verlag HD, 2003. http://dx.doi.org/10.1007/978-3-7908-1902-1_82.
Testo completoHermanek, P., e L. H. Sobin. "Tumours of Bone and Soft Tissues". In TNM Classification of Malignant Tumours, 75–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-82982-6_5.
Testo completoVárkonyi-Kóczy, A. R., B. Tusor e J. Bukor. "Data Classification Based on Fuzzy-RBF Networks". In Soft Computing Applications, 829–40. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18416-6_65.
Testo completoFejjari, Asma, Karim Saheb Ettabaa e Ouajdi Korbaa. "Feature Extraction Techniques for Hyperspectral Images Classification". In Soft Computing Applications, 174–88. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52190-5_12.
Testo completoErnst, H., W. W. Carlton, C. Courtney, M. Rinke, P. Greaves, K. R. Isaacs, G. Krinke, Y. Konishi, G. M. Mesfin e G. Sandusky. "Soft Tissue and Skeletal Muscle". In International Classification of Rodent Tumors. The Mouse, 361–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-07973-7_11.
Testo completoAtti di convegni sul tema "Soft classification"
Ionita, Andrei-Lucian, e Liviu Ciortuz. "MiRNA features for automated classification". In 2010 4th International Workshop on Soft Computing Applications (SOFA). IEEE, 2010. http://dx.doi.org/10.1109/sofa.2010.5565611.
Testo completoBuzera, M., e G. Prostean. "New algorithms used in the phases of automatic classification of products". In 2009 3rd International Workshop on Soft Computing Applications (SOFA). IEEE, 2009. http://dx.doi.org/10.1109/sofa.2009.5254848.
Testo completoBalachander, T., e R. Kothari. "Oriented soft localized subspace classification". In 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258). IEEE, 1999. http://dx.doi.org/10.1109/icassp.1999.759877.
Testo completoBhatt, Malay, Rituraj Jain e C. K. Bhensdadia. "Project Classification Using Soft Computing". In 2009 International Conference on Advances in Computing, Control, & Telecommunication Technologies (ACT 2009). IEEE, 2009. http://dx.doi.org/10.1109/act.2009.137.
Testo completoMalagon, C., J. A. Barrio e D. Nieto. "Automatic image classification from Cherenkov telescopes using Bayesian ensemble of neural networks". In 2009 3rd International Workshop on Soft Computing Applications (SOFA). IEEE, 2009. http://dx.doi.org/10.1109/sofa.2009.5254880.
Testo completoIvaturi, Anjana, Ankita Singh, B. Gunanvitha e K. S. Chethan. "Soft Classification Techniques for Breast Cancer Detection and Classification". In 2020 International Conference on Intelligent Engineering and Management (ICIEM). IEEE, 2020. http://dx.doi.org/10.1109/iciem48762.2020.9160219.
Testo completoLee, Taehyung, Jinil Kim, Jin Wook Kim, Sung-Ryul Kim e Kunsoo Park. "Detecting soft errors by redirection classification". In the 18th international conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1526709.1526886.
Testo completoGragnaniello, Diego, Giovanni Poggi, Giuseppe Scarpa e Luisa Verdoliva. "SAR despeckling based on soft classification". In IGARSS 2015 - 2015 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2015. http://dx.doi.org/10.1109/igarss.2015.7326287.
Testo completoSubramanya, Amarnag, e Jeff Bilmes. "Soft-supervised learning for text classification". In the Conference. Morristown, NJ, USA: Association for Computational Linguistics, 2008. http://dx.doi.org/10.3115/1613715.1613857.
Testo completoPaderno, Pavel I., Evgeny A. Burkov, Elena A. Tolkacheva, Evgeny A. Lavrov e Olga E. Siryk. "Expert Classification: Probabilistic Estimates". In 2021 XXIV International Conference on Soft Computing and Measurements (SCM). IEEE, 2021. http://dx.doi.org/10.1109/scm52931.2021.9507116.
Testo completoRapporti di organizzazioni sul tema "Soft classification"
Das, B. Evaluation of the point load strength for soft rock classification. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1985. http://dx.doi.org/10.4095/304811.
Testo completo