Letteratura scientifica selezionata sul tema "Solid propellant"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Solid propellant".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Solid propellant"
Jain, Prakhar, Vineet Kumar Rathi e Shelly Biswas. "Study of Aging Characteristics for Metalized HTPB Based Composite Solid Propellants Stored in Ambient Conditions". Defence Science Journal 74, n. 5 (29 agosto 2024): 615–26. http://dx.doi.org/10.14429/dsj.74.19786.
Testo completoAziz, Amir, Rizalman Mamat, Wan Khairuddin Wan Ali e Mohd Rozi Mohd Perang. "Review on Typical Ingredients for Ammonium Perchlorate Based Solid Propellant". Applied Mechanics and Materials 773-774 (luglio 2015): 470–75. http://dx.doi.org/10.4028/www.scientific.net/amm.773-774.470.
Testo completoPoryazov, V. A., K. M. Moiseeva e A. Yu Krainov. "NUMERICAL SIMULATION OF COMBUSTION OF THE COMPOSITE SOLID PROPELLANT CONTAINING BIDISPERSED BORON POWDER". Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, n. 72 (2021): 131–39. http://dx.doi.org/10.17223/19988621/72/11.
Testo completoS A, Reshmitha Shree, Saif Ahmed Ansari, Steven Raj e Sukh Arora. "EVALUATION OF SOLID ROCKET PROPELLANTS FOR LOW EARTH ORBIT". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, n. 008 (31 agosto 2024): 1–3. http://dx.doi.org/10.55041/ijsrem37252.
Testo completoZhang, Jing, Zhen Wang, Shixiong Sun e Yunjun Luo. "Preparation and Properties of a Novel High-Toughness Solid Propellant Adhesive System Based on Glycidyl Azide Polymer–Energetic Thermoplastic Elastomer/Nitrocellulose/Butyl Nitrate Ethyl Nitramine". Polymers 15, n. 18 (5 settembre 2023): 3656. http://dx.doi.org/10.3390/polym15183656.
Testo completoZhang, Jing, Zhen Wang, Shixiong Sun e Yunjun Luo. "Influence of Solid Filler on the Rheological Properties of Propellants Based on Energetic Thermoplastic Elastomer". Materials 16, n. 2 (13 gennaio 2023): 808. http://dx.doi.org/10.3390/ma16020808.
Testo completoAbdullah, Mohamed, F. Gholamian e A. R. Zarei. "Noncrystalline Binder Based Composite Propellant". ISRN Aerospace Engineering 2013 (24 settembre 2013): 1–6. http://dx.doi.org/10.1155/2013/679710.
Testo completoGlascock, Matthew S., Joshua L. Rovey e Kurt A. Polzin. "Impulse and Performance Measurements of Electric Solid Propellant in a Laboratory Electrothermal Ablation-Fed Pulsed Plasma Thruster". Aerospace 7, n. 6 (30 maggio 2020): 70. http://dx.doi.org/10.3390/aerospace7060070.
Testo completoKohga, Makoto, Tomoki Naya e Kayoko Okamoto. "Burning Characteristics of Ammonium-Nitrate-Based Composite Propellants with a Hydroxyl-Terminated Polybutadiene/Polytetrahydrofuran Blend Binder". International Journal of Aerospace Engineering 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/378483.
Testo completoHe, Zhong Qi, Ke Zhou e Shu Pan Yin. "Security Analysis on Single-Screw Extrusion Process of Solid Propellant by Numerical Simulation". Advanced Materials Research 997 (agosto 2014): 605–9. http://dx.doi.org/10.4028/www.scientific.net/amr.997.605.
Testo completoTesi sul tema "Solid propellant"
Smyth, Daniel A. "Modeling Solid Propellant Ignition Events". BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/3125.
Testo completoLowe, C. "CFD modelling of solid propellant ignition". Thesis, Cranfield University, 1996. http://hdl.handle.net/1826/3921.
Testo completoButler, Albert George. "Holographic investigation of solid propellant combustion". Thesis, Monterey, California. Naval Postgraduate School, 1988. http://hdl.handle.net/10945/23252.
Testo completoAn investigation into the behavior of aluminized solid propellant combustion in a two-dimensional windowed rocket motor was conducted using holographic techniques. Holograms were recorded in the motor port, aft of the propellant grain and at the entrance to the exhaust nozzle for two different propellant compositions at varying operating pressures. Quantitative particle size data for particles larger than 20 microns were obtained from the holograms. From these data, the mean diameters (D32) of the larger particles were calculated and utilized to compare what effects pressure, location in the motor and aluminum content had on the behavior of the aluminum/aluminum oxide particles. D 32 was found to decrease with increasing pressure, but was unaffected by variations in low values of propellant aluminum loading. D 32 at the grain exit was found to be significantly less than within the grain port.
http://archive.org/details/holographicinves00butl
Lieutenant, United States Navy
Cekic, Ayca. "Experimental Study Of Solid Propellant Combustion Instability". Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/2/12606947/index.pdf.
Testo completoLee, Sung-Taick. "Multidimensional effects in composite propellant combustion". Diss., Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/12111.
Testo completoMcDonald, Brian Anthony. "The Development of an Erosive Burning Model for Solid Rocket Motors Using Direct Numerical Simulation". Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/4973.
Testo completoMouille, Hervé. "Influence of strain rate and temperature upon the mechanical and fracture behavior of a simulated solid propellant /". This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-07212009-040252/.
Testo completoFoss, David T. "Development and modeling of a dual-frequency microwave burn rate measurement system for solid rocket propellant". Thesis, Virginia Tech, 1989. http://hdl.handle.net/10919/45962.
Testo completoA dual-frequency microwave bum rate measurement system for solid rocket motors has been developed and is described. The system operates in the X-band (8.2-12.4 Ghz) and uses two independent frequencies operating simultaneously to measure the instantaneous bum rate in a solid rocket motor. Modeling of the two frequency system was performed to determine its effectiveness in limiting errors caused by secondary reflections and errors in the estimates of certain material properties, particularly the microwave wavelength in the propellant. Computer simulations based upon the modeling were performed and are presented. Limited laboratory testing of the system was also conducted to determine its ability perform as modeled.
Simulations showed that the frequency ratio and the initial motor geometry (propellant thickness and combustion chamber diameter) determined the effectiveness of the system in reducing secondary reflections. Results presented show that higher frequency ratios provided better error reduction. Overall, the simulations showed that a dual frequency system can provide up to a 75% reduction in burn rate error over that returned by a single frequency system. The hardware and software for dual frequency measurements was developed and tested, however, further instrumentation work is required to increase the rate at which data is acquired using the methods presented here. The system presents some advantages over the single frequency method but further work needs to be done to realize its full potential.
Master of Science
McCrorie, J. David. "Particle behavior in solid propellant rocket motors and plumes". Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/24002.
Testo completoGomes, Marc Faria. "Internal ballistics simulation of a solid propellant rocket motor". Master's thesis, Universidade da Beira Interior, 2013. http://hdl.handle.net/10400.6/1980.
Testo completoNa concepção e desenvolvimento de motores foguete sólidos, o uso de ferramentas numéricas capazes de simular, prever e reconstruir o comportamento de um dado do motor em todas as condições operativas ´e particularmente importante, a fim de diminuir todos os custos e planeamento. Este estudo ´e dedicado a apresentar uma abordagem para a simulação numérica de balística interna de um determinado motor foguete de propelente sólido, Naval Air Warfare Center no. 13, durante a fase quasi steady state por meio de uma ferramenta numérica comercial, ANSYS FLUENT. O modelo de balística interna construído neste estudo é um modelo axissimétrico 2-D. Tem por base vários pressupostos. Entre eles, está o pressuposto de que não há contribuição da queima erosiva e da queima dinâmica no modelo da taxa de queima. Os resultados da simulação balística interna são comparados com os resultados encontrados na pesquisa bibliográfica, validando assim, o modelo que foi construído. A validação dos resultados também nos permite concluir que os pressupostos assumidos na construção do modelo são razoáveis. Sugestões e recomendações para um estudo mais aprofundado são delineadas.
Libri sul tema "Solid propellant"
Xristin, Schad, e United States. National Aeronautics and Space Administration., a cura di. Propellant variability assessment. [Huntsville, Ala.]: Quality Engineering Research Laboratory, University of Alabama in Huntsville, 1991.
Cerca il testo completoKishore, K. Solid propellant chemistry: Condensed phase behaviour of ammonium perchlorate-based solid propellants. New Delhi: Defence Research & Development Organisation, Ministry of Defence, 1999.
Cerca il testo completoNorth Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Performance of rocket motors with metallized propellants: Report of the Propulsion and Energetics Panel Working Group 17. Neuilly sur Seine, France: AGARD, 1986.
Cerca il testo completoNorth Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Performance of Rocket Motors with Metallized Propellants: Report of the Propulsion and Energetics Panel : Working Group 17. S.l: s.n, 1986.
Cerca il testo completoL, Boggs Thomas, Derr Ronald L e Advisory Group for Aerospace Research and Development. Propulsion and Energetics Panel., a cura di. Hazard studies for solid propellant motors. Neuilly sur Seine: Agard, 1990.
Cerca il testo completoButler, Albert George. Holographic investigation of solid propellant combustion. Monterey, Calif: Naval Postgraduate School, 1988.
Cerca il testo completoG, Schirk P., e United States. National Aeronautics and Space Administration., a cura di. Facility design consideration for continuous mix production of class 1.3 propellant. [Washington, DC: National Aeronautics and Space Administration, 1994.
Cerca il testo completoNorth Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Design methods in solid rocket motors. Neuilly sur Seine, France: AGARD, 1988.
Cerca il testo completoNorth Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Design Methods in Solid Rocket Motors. S.l: s.n, 1987.
Cerca il testo completoUnited States. National Aeronautics and Space Administration., a cura di. NASA's advanced solid rocket motor. [Washington, DC: National Aeronautics and Space Administration, 1993.
Cerca il testo completoCapitoli di libri sul tema "Solid propellant"
Wu, Jianjun, Jian Li, Yuanzheng Zhao e Yu Zhang. "Numerical Simulation of the Nanosecond Laser Ablation of Al Propellant". In Numerical Simulation of Pulsed Plasma Thruster, 61–87. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-7958-1_4.
Testo completoGreatrix, David R. "Solid-Propellant Rocket Motors". In Powered Flight, 323–79. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2485-6_10.
Testo completoMishra, D. P. "Solid-Propellant Rocket Engines". In Fundamentals of Rocket Propulsion, 195–259. Boca Raton: CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315175997-7.
Testo completoRanjan, Rajeev, e H. Murthy. "Compressive Behaviour of Composite Solid Propellant". In Advances in Applied Mechanics, 25–30. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0472-9_4.
Testo completoCheng, S. I. "L*-Combustion Instability in Solid Propellant Rocket Combustion". In Recent Advances in the Aerospace Sciences, 257–78. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-4298-4_13.
Testo completoAkbar, Mohammed, e Prabhat Dattakumar Phondekar. "Design and Analysis of Optimized Solid Propellant Grain". In Lecture Notes in Mechanical Engineering, 743–58. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-7827-4_58.
Testo completoNagappa, Rajaram. "The First Steps Toward Self-reliance in Solid Propellant Rockets". In The Mind of an Engineer, 401–8. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-10-0119-2_51.
Testo completoTraissac, Y., J. Ninous, R. Neviere e J. Pouyet. "Mechanical Behavior of a Solid Composite Propellant During Motor Ignition". In Advances in Chemistry, 195–210. Washington, DC: American Chemical Society, 1996. http://dx.doi.org/10.1021/ba-1996-0252.ch014.
Testo completoHawthorne, M. Frederick. "Moving on to New Concepts for Solid Propellant Rocket Fuel". In Boranes and Beyond, 179–80. New York, NY: Springer New York, 2023. http://dx.doi.org/10.1007/978-1-0716-2908-6_25.
Testo completoZhang, Xue-Xue, Hao-Rui Zhang, Ming-Hui Yu e Qi-Long Yan. "Metal-Based Green Energetic Catalysts for Solid Propellant Combustion Control". In Space Technology Library, 283–332. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-62574-9_10.
Testo completoAtti di convegni sul tema "Solid propellant"
Chen, Yang, Vahid Morovati e Roozbeh Dargazany. "A Directional Damage Constitutive Model for Stress-Softening in Solid Propellant". In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24285.
Testo completoJang, Jin-Sung, Hyung-Gun Sung, Seung-Young Yoo, Tae-Seong Roh e Dong-Whan Choi. "Numerical Study on Properties of Interior Ballistics According to Solid Propellant Position in Chamber". In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-12005.
Testo completoVanderhoff, John A. "Multichannel absorption spectroscopy applied to solid-propellant flames". In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.tugg5.
Testo completoMarshall, Tony, John Evans e Robert Frederick. "UAH Solid Propellant Characterization". In 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-5763.
Testo completoWingborg, Niklas. "Solid ADN Propellant Development". In 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-3723.
Testo completoGODON, J., J. DUTERQUE e G. LENGELLE. "Solid propellant erosive burning". In 23rd Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-2031.
Testo completoBiggs, Gary. "Solid Propellant Aging Kinetics". In 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-5423.
Testo completoParra, E. A., K. S. J. Pister e C. Fernandez-Pello. "A Practical Solid-Propellant Micro-Thruster". In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15061.
Testo completoPrice, E., R. Jeenu, S. Chakravarthy e J. Seitzman. "Solid propellant combustion - Surface disproportionation". In 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-3327.
Testo completoBLOMSHIELD, F., e J. OSBORN. "Nitramine composite solid propellant modeling". In 26th Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-2311.
Testo completoRapporti di organizzazioni sul tema "Solid propellant"
Yang, Jiann C., e William L. Grosshandler. Solid propellant gas generators:. Gaithersburg, MD: National Institute of Standards and Technology, 1995. http://dx.doi.org/10.6028/nist.ir.5766.
Testo completoFry, Ronald S. Solid Propellant Test Motor Scaling. Fort Belvoir, VA: Defense Technical Information Center, settembre 2001. http://dx.doi.org/10.21236/ada386366.
Testo completoBlomshield, F. S. Nitramine Composite Solid Propellant Modelling. Fort Belvoir, VA: Defense Technical Information Center, luglio 1989. http://dx.doi.org/10.21236/ada220198.
Testo completoPrice, E. W., e G. A. Flandro. Combustion Instability in Solid Propellant Rockets. Fort Belvoir, VA: Defense Technical Information Center, febbraio 1987. http://dx.doi.org/10.21236/ada179701.
Testo completoGraves, V., G. Bader, M. Dolecki, S. Krupski e R. Zangrando. Crusader solid propellant best technical approach. Office of Scientific and Technical Information (OSTI), dicembre 1995. http://dx.doi.org/10.2172/179267.
Testo completoBaron, D. T., C. T. Liu e T. C. Miller. Subcritical Crack Growth in a Composite Solid Propellant. Fort Belvoir, VA: Defense Technical Information Center, maggio 1998. http://dx.doi.org/10.21236/ada409841.
Testo completoStolovy, A., A. I. Namenson e J. M. Kidd. Solid Rocket Propellant Initiation Via Particle Beam Heating. Fort Belvoir, VA: Defense Technical Information Center, maggio 1990. http://dx.doi.org/10.21236/ada221900.
Testo completoFry, R. S., L. DeLuca, R. Frederick, G. Gadiot, R. Strecker, H.-L. Besser, A. Whitehouse, J.-C. Traineau, D. Ribereau e J.-P. Reynaud. Evaluation of Methods for Solid Propellant Burning Rate Measurement. Fort Belvoir, VA: Defense Technical Information Center, gennaio 2002. http://dx.doi.org/10.21236/ada405711.
Testo completoLiu, C. T., Y. W. Kwon e T. L. Hendrickson. Predicting the Initial Crack Length in a Solid Propellant. Fort Belvoir, VA: Defense Technical Information Center, ottobre 2000. http://dx.doi.org/10.21236/ada408146.
Testo completoLiu, C. T., Y. G. Kwon e T. L. Hendrickson. Predicting the Initial Crack Length in a Solid Propellant. Fort Belvoir, VA: Defense Technical Information Center, gennaio 2001. http://dx.doi.org/10.21236/ada410143.
Testo completo