Segui questo link per vedere altri tipi di pubblicazioni sul tema: SWASTIKA SHAPED ANTENNA.

Articoli di riviste sul tema "SWASTIKA SHAPED ANTENNA"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-16 articoli di riviste per l'attività di ricerca sul tema "SWASTIKA SHAPED ANTENNA".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Burlakoti, Suroj, e Prakash Rai. "Performance Comparison of Swastika and Rectangular Shaped Microstrip Patch Antenna". Kathford Journal of Engineering and Management 1, n. 1 (14 dicembre 2018): 11–14. http://dx.doi.org/10.3126/kjem.v1i1.22015.

Testo completo
Abstract (sommario):
In this paper, Microstrip patch antennas with rectangular and swastika shape of patch are designed and its performance parameters are compared with each other. Rectangular and Swastika shaped patch are considered in this paper with common rectangular ground plane. The antenna is simulated at 2.4 GHz using HFSS simulation software. This work mainly includes modification of antenna patch to improve the antenna parameters. The parameters of antenna such as Return loss, VSWR Bandwidth and radiation pattern are compared using simulation. The performance of Swastika shaped antenna was found to be better than rectangular shaped microstrip patch antenna with improved Return Loss, VSWR, Bandwidth and Radiation Pattern.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Rathor, Vivek Singh, e Jai Prakash Saini. "A Design of Swastika Shaped Wideband Microstrip Patch Antenna for GSM/WLAN Application". Journal of Electromagnetic Analysis and Applications 06, n. 03 (2014): 31–37. http://dx.doi.org/10.4236/jemaa.2014.63005.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Rahman, Shahriar, e M. Tanseer Ali. "Performance Study of Swastika Shaped Microstrip Patch Antenna loaded with Meta-material Layer". International Journal of Computer Applications 104, n. 16 (18 ottobre 2014): 8–12. http://dx.doi.org/10.5120/18284-9407.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Tiwari, Rakesh N., Prabhakar Singh, Shivam Pandey, Ritika Anand, Dinesh Kumar Singh e Binod Kumar Kanaujia. "Swastika shaped slot embedded two port dual frequency band MIMO antenna for wireless applications". Analog Integrated Circuits and Signal Processing 109, n. 1 (9 agosto 2021): 103–13. http://dx.doi.org/10.1007/s10470-021-01923-x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Jagadeesh Babu, K., K. Sri Ramakrishna e L. Pratap Reddy. "A triband swastika shaped patch antenna with reduced mutual coupling for wireless mimo systems". Journal of Electronics (China) 28, n. 4-6 (novembre 2011): 483–87. http://dx.doi.org/10.1007/s11767-012-0738-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Samsuzzaman, M., T. Islam, N. H. Abd Rahman, M. R. I. Faruque e J. S. Mandeep. "Compact Modified Swastika Shape Patch Antenna for WLAN/WiMAX Applications". International Journal of Antennas and Propagation 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/825697.

Testo completo
Abstract (sommario):
A compact simple structure modified Swastika shape multiband patch antenna is designed and investigated. The antenna, which occupies an overall dimension of 0.305λ × 0.305λ × 0.012λat lower frequency, has a simple structure which comprises of a planar wide square slot in the ground with four slits and Swastika shape radiation patch with a rectangular slot. The proposed Swastika shape antenna was designed and analyzed by using a finite element method based high frequency structural simulator HFSS. The experimental and numerical results exhibit that the antenna operates over the frequency ranges 950 MHz (2.28–3.23 GHz), 660 MHz (3.28–3.94 GHz), and 1120 MHz (5.05–6.17 GHz) suitable for WLAN (2.4/5.2/5.8 GHz) and WiMAX 2.5/3.5/5.5 GHz applications. It has a good omnidirectional radiation pattern and reaches 3.97 dBi at 2.44 GHz, 4.04 dBi at 3.5 GHz, and 3.25 dBi at the band of 5.98 GHz. A prototype is fabricated and then measured. The experimental and simulation results show good impedance bandwidth, radiation pattern, and stable gain across the operating bands.
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Mutreja, Manisha. "A Compact Microstrip Patch Antenna with SWASTIKA Shape Slot". International Journal for Research in Applied Science and Engineering Technology 6, n. 6 (30 giugno 2018): 1130–35. http://dx.doi.org/10.22214/ijraset.2018.6167.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Jyothi, N. Krishna. "Gain Enhancement of Microstrip Patch Antenna for Wi-Fi Augmentation". International Journal for Research in Applied Science and Engineering Technology 11, n. 6 (30 giugno 2023): 3760–66. http://dx.doi.org/10.22214/ijraset.2023.54190.

Testo completo
Abstract (sommario):
Abstract: A wideband, compact and low profile microstrip patch antenna (MSPA) design for wireless fidelity and C-band considerations is very advantageous in various applications. The antenna proposed in this paper consists of a simple laterally inverted Swastik-shaped patch with the microstrip line fed and a rectangular ground plane. The antenna has patch dimension of 15mm×12mm, substrate dimension of 20mm×20mm overall size, prototyped on FR4 material of excellent physical and electrical properties, thickness of 0.5 mm and a dielectric constant of 4.4. According to the software simulation results, the proposed MSPA displays remarkable return loss and voltage standing wave ratio (VSWR) and operates at the Wi-Fi frequency of 5 GHz. In addition to this, it may also be operated in the frequency range of 4-8 GHz. The results obtained from the measurements are similar to the fabricated antenna after testing using the vector network analyzer (VNA).
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Kushwaha, Nagendra, e Raj Kumar. "AN UWB FRACTAL ANTENNA WITH DEFECTED GROUND STRUCTURE AND SWASTIKA SHAPE ELECTROMAGNETIC BAND GAP". Progress In Electromagnetics Research B 52 (2013): 383–403. http://dx.doi.org/10.2528/pierb13051509.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Sharma, Anand, Devendra Kumar Tripathi, Gourab Das e Ravi Kumar Gangwar. "Novel asymmetrical Swastik‐shaped aperture coupled cylindrical dielectric resonator antenna with dual‐band and dual‐sense circular polarization characteristics". Microwave and Optical Technology Letters 61, n. 2 (27 novembre 2018): 405–11. http://dx.doi.org/10.1002/mop.31554.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Viswanadha, Karteek, e N. S. "Design of High Gain, Bandwidth and Efficient Double Split Ring Slotted Antenna with Swastika Shape EBG Structures at 21.29GHz for High Data Rate Communications". International Journal of Computer Applications 180, n. 11 (17 gennaio 2018): 35–38. http://dx.doi.org/10.5120/ijca2018916232.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

"Design and Implementation of MIMO Antenna Using Swastika Slot for Wireless Applications". International Journal of Recent Technology and Engineering 8, n. 3 (30 settembre 2019): 3972–76. http://dx.doi.org/10.35940/ijrte.c5355.098319.

Testo completo
Abstract (sommario):
MIMO (Multiple-Input Multiple-Output) antenna has gained a lot of attention for research today due to various advantages such as increase in capacity, low signal loss, and less multipath fading. The main objective of this work is to design and implement a compact antenna using MIMO systems to reduce the mutual coupling between the antenna elements and to provide high isolation for Wi-Fi (2.4 GHz to 5 GHz) & Bluetooth (2.4 GHz to 2.57 GHz) and WLAN 802.11(2.4-2.485 GHz) applications. Different shapes of MIMO antennas are implemented but they have some interference with high mutual coupling and low gain. In order to avoid this, “Dumbell” shaped patch is introduced with a ‘Swastika’ slot between the patches. The antenna is designed over a frequency of 2.51GHz using FR4 epoxy as a substrate material. The proposed antenna shows better performance than many existing systems with an overall size of 93.02 × 54.72 mm2 having isolation better than -16 dB, obtained gain of 8.29 dB and envelope correlation coefficient (ECC) is investigated about 0.0092. The proposed MIMO antenna is simulated using HFSS 18.0 (High Frequency Structural Simulator) software and fabricated to validate the results. It is clearly observed that simulated results are close to practical measured results.
Gli stili APA, Harvard, Vancouver, ISO e altri
13

"TREE Shape Micro-Strip Antenna using Stack Layer DGS". International Journal of Innovative Technology and Exploring Engineering 8, n. 9S (23 agosto 2019): 938–43. http://dx.doi.org/10.35940/ijitee.i1152.0789s19.

Testo completo
Abstract (sommario):
This paper describes a tree structure antenna with defected ground structure & CPW feeding. In this proposed antenna, Swasthik layer defected ground structure has been considered to achieve wide-band & ultra-wideband (UWB) characteristics for impedance matching. The simulation bandwidth matching from S11<-10dB and frequency from 5GHz-20GHz. The Swasthik shape antenna is designed for the enhancement of multiband frequency applicable for L-band, D-band & SHF-band. The antenna performance evaluating the dense antenna that is applicable for portable communication devices.
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Saritha, Vanka, Pechetti Divya Naga Sai Prasanna, Chakali Chandrasekhar, Areti Jhansi Rani e Manikonda Venkateswararao. "A triple band pattern reconfigurable planar antenna for 5G applications". Frequenz, 15 aprile 2022. http://dx.doi.org/10.1515/freq-2021-0051.

Testo completo
Abstract (sommario):
Abstract This paper presents a triple-band planar antenna with diverse radiation patterns. The proposed planar antenna is a modified swastika shape with three fingers and the ground plane is a circle with rectangular slots etched on four sides radially. The slotted ground plane is loaded with Four PIN diodes to realign the surface current. Pattern reconfigurability is achieved at the triple bands by changing the states of the diode. The antenna operates in triple bands centered at 2.2, 2.9 and 3.5 GHz. The antenna is printed on FR4 Epoxy substrate. The simulated reflection coefficient is well below −10dB at resonant frequencies. The measured patterns and return loss are in very close agreement with the simulated results. This antenna can find potential applications in 5G systems.
Gli stili APA, Harvard, Vancouver, ISO e altri
15

P, Nagaraju, Imran Khan, H. V. Kumaraswamy, Sachina D H e K. R. Sudhindra. "Analysis of SWASTIK-shaped Slotted MSPA Antenna for 5G Sub Band Applications". Global Transitions Proceedings, aprile 2022. http://dx.doi.org/10.1016/j.gltp.2022.04.018.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

"Rectangular Zigzag Microstrip Patch Antenna with Swastik Shape DGS for WLAN, C and Ku-Band Applications". International Journal of Innovative Technology and Exploring Engineering 8, n. 9S (23 agosto 2019): 280–84. http://dx.doi.org/10.35940/ijitee.i1044.0789s19.

Testo completo
Abstract (sommario):
A triple band microstrip-fed patch antenna is presented which contains the radiating structure having rectangular zigzag shape patch and an altered ground structure with a swastic shape design. This modified ground plane actually acts as a defected ground structure (DGS). Both the modified ground plane and radiating patch are perfect electric conductors. The patch is imprinted on a substrate named as Epoxy Glass FR-4 having thickness 1.6 mm, relative permittivity 4.4, and loss tangent 0.0024. The designed microstrip patch antenna (MPA) is able to generate three specific operating bands viz. 11.9–13.6 GHz, 5.71–5.82 GHz, 4.5-4.6 GHz with adequate bandwidth of 1.64 GHz, 110 MHz and 100 MHz and corresponding return loss of -32dB, -23dB, -14.3dB respectively covering Wireless Local Area Network (WLAN), C-band and Ku-band applications. A parametric study has been performed for the rectangular slots located in the patch. Proposed MPA is simulated using Computer Simulation Technology Microwave Studio Version 14.0 (CST MWS V14.0). Lastly, the fabrication of the proposed antenna with optimized parameters has been accomplished and measured results for S-parameter magnitude have been discussed
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia