Segui questo link per vedere altri tipi di pubblicazioni sul tema: Symmetric varieties.

Articoli di riviste sul tema "Symmetric varieties"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Symmetric varieties".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Bifet, Emili. "On complete symmetric varieties". Advances in Mathematics 80, n. 2 (aprile 1990): 225–49. http://dx.doi.org/10.1016/0001-8708(90)90026-j.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Guay, Nicolas. "Embeddings of symmetric varieties". Transformation Groups 6, n. 4 (dicembre 2001): 333–52. http://dx.doi.org/10.1007/bf01237251.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

De Concini, C., e T. A. Springer. "Compactification of symmetric varieties". Transformation Groups 4, n. 2-3 (giugno 1999): 273–300. http://dx.doi.org/10.1007/bf01237359.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Hong, Jiuzu, e Korkeat Korkeathikhun. "Nilpotent varieties in symmetric spaces and twisted affine Schubert varieties". Representation Theory of the American Mathematical Society 26, n. 20 (2 giugno 2022): 585–615. http://dx.doi.org/10.1090/ert/613.

Testo completo
Abstract (sommario):
We relate the geometry of Schubert varieties in twisted affine Grassmannian and the nilpotent varieties in symmetric spaces. This extends some results of Achar–Henderson in the twisted setting. We also get some applications to the geometry of the order 2 nilpotent varieties in certain classical symmetric spaces.
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Can, Mahir Bilen, Roger Howe e Lex Renner. "Monoid embeddings of symmetric varieties". Colloquium Mathematicum 157, n. 1 (2019): 17–33. http://dx.doi.org/10.4064/cm7644-7-2018.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Li, Yiqiang. "Quiver varieties and symmetric pairs". Representation Theory of the American Mathematical Society 23, n. 1 (17 gennaio 2019): 1–56. http://dx.doi.org/10.1090/ert/522.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Uzawa, Tohru. "Symmetric varieties over arbitrary fields". Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 333, n. 9 (novembre 2001): 833–38. http://dx.doi.org/10.1016/s0764-4442(01)02152-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Cuntz, M., Y. Ren e G. Trautmann. "Strongly symmetric smooth toric varieties". Kyoto Journal of Mathematics 52, n. 3 (2012): 597–620. http://dx.doi.org/10.1215/21562261-1625208.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Pragacz, P. "Determinantal varieties and symmetric polynomials". Functional Analysis and Its Applications 21, n. 3 (luglio 1987): 249–50. http://dx.doi.org/10.1007/bf02577147.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Aramova, Annetta G. "Symmetric products of Gorenstein varieties". Journal of Algebra 146, n. 2 (marzo 1992): 482–96. http://dx.doi.org/10.1016/0021-8693(92)90079-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Springer, T. A. "Decompositions related to symmetric varieties". Journal of Algebra 329, n. 1 (marzo 2011): 260–73. http://dx.doi.org/10.1016/j.jalgebra.2010.03.014.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Kiritchenko, Valentina, e Amalendu Krishna. "Equivariant cobordism of flag varieties and of symmetric varieties". Transformation Groups 18, n. 2 (5 maggio 2013): 391–413. http://dx.doi.org/10.1007/s00031-013-9223-z.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Lee, Jae-Hyouk, Kyeong-Dong Park e Sungmin Yoo. "Kähler–Einstein Metrics on Smooth Fano Symmetric Varieties with Picard Number One". Mathematics 9, n. 1 (5 gennaio 2021): 102. http://dx.doi.org/10.3390/math9010102.

Testo completo
Abstract (sommario):
Symmetric varieties are normal equivarient open embeddings of symmetric homogeneous spaces, and they are interesting examples of spherical varieties. We prove that all smooth Fano symmetric varieties with Picard number one admit Kähler–Einstein metrics by using a combinatorial criterion for K-stability of Fano spherical varieties obtained by Delcroix. For this purpose, we present their algebraic moment polytopes and compute the barycenter of each moment polytope with respect to the Duistermaat–Heckman measure.
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Yu, Chenglong, e Zhiwei Zheng. "Moduli spaces of symmetric cubic fourfolds and locally symmetric varieties". Algebra & Number Theory 14, n. 10 (19 novembre 2020): 2647–83. http://dx.doi.org/10.2140/ant.2020.14.2647.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Can, Mahir Bilen, Michael Joyce e Benjamin Wyser. "Wonderful symmetric varieties and Schubert polynomials". Ars Mathematica Contemporanea 15, n. 2 (11 settembre 2018): 523–42. http://dx.doi.org/10.26493/1855-3974.1062.ba8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Pate, Thomas H. "Algebraic varieties in the symmetric algebra". Linear and Multilinear Algebra 20, n. 1 (novembre 1986): 63–74. http://dx.doi.org/10.1080/03081088608817742.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

PANYUSHEV, DMITRI, e OKSANA YAKIMOVA. "Symmetric pairs and associated commuting varieties". Mathematical Proceedings of the Cambridge Philosophical Society 143, n. 2 (settembre 2007): 307–21. http://dx.doi.org/10.1017/s0305004107000473.

Testo completo
Abstract (sommario):
AbstractLet $\g=\g_0\oplus\g_1$ be a $\mathbb Z_2$-grading of a simple Lie algebra $\g$. The commuting variety associated with such a grading is the variety of pairs of commuting elements from $\g_1$. We study the problem of irreducibility of these varieties. Using invariant-theoretic technique, we present new instances of reducible and irreducible commuting varieties.
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Sankaran, G. K. "Fundamental group of locally symmetric varieties". Manuscripta Mathematica 90, n. 1 (dicembre 1996): 39–48. http://dx.doi.org/10.1007/bf02568292.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Strickland, Elisabetta. "Equivariant betti numbers for symmetric varieties". Journal of Algebra 145, n. 1 (gennaio 1992): 120–27. http://dx.doi.org/10.1016/0021-8693(92)90180-t.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Kollár, János. "Symmetric powers of Severi–Brauer varieties". Annales de la faculté des sciences de Toulouse Mathématiques 27, n. 4 (2018): 849–62. http://dx.doi.org/10.5802/afst.1584.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Maffei, Andrea, e Rocco Chiriv�. "Projective normality of complete symmetric varieties". Duke Mathematical Journal 122, n. 1 (marzo 2004): 93–123. http://dx.doi.org/10.1215/s0012-7094-04-12213-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Pumplün, Susanne. "Symmetric composition algebras over algebraic varieties". manuscripta mathematica 132, n. 3-4 (22 febbraio 2010): 307–33. http://dx.doi.org/10.1007/s00229-010-0348-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Buch, Anders Skovsted. "Stanley Symmetric Functions and Quiver Varieties". Journal of Algebra 235, n. 1 (gennaio 2001): 243–60. http://dx.doi.org/10.1006/jabr.2000.8478.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Akhiezer, D. N., e E. B. Vinberg. "Weakly symmetric spaces and spherical varieties". Transformation Groups 4, n. 1 (marzo 1999): 3–24. http://dx.doi.org/10.1007/bf01236659.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Kinser, Ryan, e Jenna Rajchgot. "Type D quiver representation varieties, double Grassmannians, and symmetric varieties". Advances in Mathematics 376 (gennaio 2021): 107454. http://dx.doi.org/10.1016/j.aim.2020.107454.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

AVAN, J., J.-M. MAILLARD, M. TALON e C. VIALLET. "ALGEBRAIC VARIETIES FOR THE CHIRAL POTTS MODEL". International Journal of Modern Physics B 04, n. 10 (agosto 1990): 1743–62. http://dx.doi.org/10.1142/s0217979290000875.

Testo completo
Abstract (sommario):
We describe the symmetries of the chiral checkerboard Potts model (duality, inversion relation, …) and write down the algebraic variety corresponding to the integrable case advocated by Baxter, Perk, Au-Yang. We examine some of its subvarieties, in different limits and for various lattices, with a special emphasis on q=3. This yields for q=3, a new algebraic variety where the standard scalar checkerboard Potts model is solvable. By a comparative analysis of the parametrization of the integrable four-state chiral Potts model and the one of the symmetric Ashkin-Teller model, we bring to light algebraic subvarieties for the q-state chiral Potts model which are invariant under the symmetries of the model. We recover in this manner the Fateev-Zamolodchikov points.
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Chajda, Ivan. "Varieties with modular and distributive lattices of symmetric or reflexive relations". Czechoslovak Mathematical Journal 42, n. 4 (1992): 623–30. http://dx.doi.org/10.21136/cmj.1992.128357.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Chirivì, Rocco, Corrado De Concini e Andrea Maffei. "On normality of cones over symmetric varieties". Tohoku Mathematical Journal 58, n. 4 (dicembre 2006): 599–616. http://dx.doi.org/10.2748/tmj/1170347692.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Hemmer, David J., e Daniel K. Nakano. "Support varieties for modules over symmetric groups". Journal of Algebra 254, n. 2 (agosto 2002): 422–40. http://dx.doi.org/10.1016/s0021-8693(02)00104-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Casagrande, Cinzia. "Centrally symmetric generators in toric Fano varieties". manuscripta mathematica 111, n. 4 (1 agosto 2003): 471–85. http://dx.doi.org/10.1007/s00229-003-0374-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Maffei, Andrea. "Orbits in Degenerate Compactifications of Symmetric Varieties". Transformation Groups 14, n. 1 (20 novembre 2008): 183–94. http://dx.doi.org/10.1007/s00031-008-9040-y.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Süß, Hendrik. "Kähler–Einstein metrics on symmetric FanoT-varieties". Advances in Mathematics 246 (ottobre 2013): 100–113. http://dx.doi.org/10.1016/j.aim.2013.06.023.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Gagliardi, Giuliano, e Johannes Hofscheier. "The generalized Mukai conjecture for symmetric varieties". Transactions of the American Mathematical Society 369, n. 4 (2 maggio 2016): 2615–49. http://dx.doi.org/10.1090/tran/6738.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Fan, Zhaobing, Chun-Ju Lai, Yiqiang Li, Li Luo e Weiqiang Wang. "Affine flag varieties and quantum symmetric pairs". Memoirs of the American Mathematical Society 265, n. 1285 (maggio 2020): 0. http://dx.doi.org/10.1090/memo/1285.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Venkataramana, T. N. "On Cycles on Compact Locally Symmetric Varieties". Monatshefte f?r Mathematik 135, n. 3 (1 aprile 2002): 221–44. http://dx.doi.org/10.1007/s006050200018.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Ruzzi, Alessandro. "Projective normality of complete toroidal symmetric varieties". Journal of Algebra 318, n. 1 (dicembre 2007): 302–22. http://dx.doi.org/10.1016/j.jalgebra.2007.07.005.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Franz, Matthias. "Symmetric Products of Equivariantly Formal Spaces". Canadian Mathematical Bulletin 61, n. 2 (1 giugno 2018): 272–81. http://dx.doi.org/10.4153/cmb-2017-032-0.

Testo completo
Abstract (sommario):
AbstractLet X be a CW complex with a continuous action of a topological group G. We show that if X is equivariantly formal for singular cohomology with coefficients in some field , then so are all symmetric products of X and in fact all its Γ-products. In particular, symmetric products of quasi-projective M-varieties are again M-varieties. This generalizes a result by Biswas and D’Mello about symmetric products of M-curves. We also discuss several related questions.
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Jones, Oliver. "On the geometry of varieties of invertible symmetric and skew-symmetric matrices". Pacific Journal of Mathematics 180, n. 1 (1 settembre 1997): 89–100. http://dx.doi.org/10.2140/pjm.1997.180.89.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

RUZZI, ALESSANDRO. "SMOOTH PROJECTIVE SYMMETRIC VARIETIES WITH PICARD NUMBER ONE". International Journal of Mathematics 22, n. 02 (febbraio 2011): 145–77. http://dx.doi.org/10.1142/s0129167x11005678.

Testo completo
Abstract (sommario):
We classify the smooth projective symmetric G-varieties with Picard number one (and G semisimple). Moreover, we prove a criterion for the smoothness of the simple (normal) symmetric varieties whose closed orbit is complete. In particular we prove that, given a such variety X which is not exceptional, then X is smooth if and only if an appropriate toric variety contained in X is smooth.
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Casarotti, Alex, Alex Massarenti e Massimiliano Mella. "On Comon’s and Strassen’s Conjectures". Mathematics 6, n. 11 (25 ottobre 2018): 217. http://dx.doi.org/10.3390/math6110217.

Testo completo
Abstract (sommario):
Comon’s conjecture on the equality of the rank and the symmetric rank of a symmetric tensor, and Strassen’s conjecture on the additivity of the rank of tensors are two of the most challenging and guiding problems in the area of tensor decomposition. We survey the main known results on these conjectures, and, under suitable bounds on the rank, we prove them, building on classical techniques used in the case of symmetric tensors, for mixed tensors. Finally, we improve the bound for Comon’s conjecture given by flattenings by producing new equations for secant varieties of Veronese and Segre varieties.
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Boe, Brian D., e Joseph H. G. Fu. "Characteristic Cycles in Hermitian Symmetric Spaces". Canadian Journal of Mathematics 49, n. 3 (1 giugno 1997): 417–67. http://dx.doi.org/10.4153/cjm-1997-021-7.

Testo completo
Abstract (sommario):
AbstractWe give explicit combinatorial expresssions for the characteristic cycles associated to certain canonical sheaves on Schubert varieties X in the classical Hermitian symmetric spaces: namely the intersection homology sheaves IHX and the constant sheaves ℂX. The three main cases of interest are the Hermitian symmetric spaces for groups of type An (the standard Grassmannian), Cn (the Lagrangian Grassmannian) and Dn. In particular we find that CC(IHX) is irreducible for all Schubert varieties X if and only if the associated Dynkin diagramis simply laced. The result for Schubert varieties in the standard Grassmannian had been established earlier by Bressler, Finkelberg and Lunts, while the computations in the Cn and Dn cases are new.Our approach is to compute CC(ℂX) by a direct geometric method, then to use the combinatorics of the Kazhdan-Lusztig polynomials (simplified for Hermitian symmetric spaces) to compute CC(IHX). The geometric method is based on the fundamental formula where the Xr ↓ X constitute a family of tubes around the variety X. This formula leads at once to an expression for the coefficients of CC(ℂX) as the degrees of certain singular maps between spheres.
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Yohan BRUNEBARBE. "A strong hyperbolicity property of locally symmetric varieties". Annales scientifiques de l'École normale supérieure 53, n. 6 (2020): 1545–60. http://dx.doi.org/10.24033/asens.2453.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Marberg, Eric, e Brendan Pawlowski. "Gröbner geometry for skew-symmetric matrix Schubert varieties". Advances in Mathematics 405 (agosto 2022): 108488. http://dx.doi.org/10.1016/j.aim.2022.108488.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Browning, T. D., e A. Gorodnik. "Power-free values of polynomials on symmetric varieties". Proceedings of the London Mathematical Society 114, n. 6 (10 marzo 2017): 1044–80. http://dx.doi.org/10.1112/plms.12030.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Gorodnik, Alexander, Hee Oh e Nimish Shah. "Integral points on symmetric varieties and Satake compatifications". American Journal of Mathematics 131, n. 1 (2009): 1–57. http://dx.doi.org/10.1353/ajm.0.0034.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Bigeni, Ange, e Evgeny Feigin. "Symmetric Dellac configurations and symplectic/orthogonal flag varieties". Linear Algebra and its Applications 573 (luglio 2019): 54–79. http://dx.doi.org/10.1016/j.laa.2019.03.015.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Beelen, Peter, e Prasant Singh. "Linear codes associated to skew-symmetric determinantal varieties". Finite Fields and Their Applications 58 (luglio 2019): 32–45. http://dx.doi.org/10.1016/j.ffa.2019.03.004.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Robles, C., e D. The. "Rigid Schubert varieties in compact Hermitian symmetric spaces". Selecta Mathematica 18, n. 3 (17 gennaio 2012): 717–77. http://dx.doi.org/10.1007/s00029-011-0082-y.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

TAKAHASHI, NOBUYOSHI. "QUANDLE VARIETIES, GENERALIZED SYMMETRIC SPACES, AND φ-SPACES". Transformation Groups 21, n. 2 (25 novembre 2015): 555–76. http://dx.doi.org/10.1007/s00031-015-9351-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Richardson, R. W., e T. A. Springer. "Complements to ‘The Bruhat order on symmetric varieties’". Geometriae Dedicata 49, n. 2 (febbraio 1994): 231–38. http://dx.doi.org/10.1007/bf01610623.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia