Letteratura scientifica selezionata sul tema "The Kantorovich duality"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "The Kantorovich duality".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "The Kantorovich duality"
Ramachandran, Doraiswamy, Doraiswamy Ramachandran, Ludger Ruschendorf e Ludger Ruschendorf. "On the Monge - Kantorovich duality theorem". Teoriya Veroyatnostei i ee Primeneniya 45, n. 2 (2000): 403–9. http://dx.doi.org/10.4213/tvp474.
Testo completoZhang, Xicheng. "Stochastic Monge–Kantorovich problem and its duality". Stochastics 85, n. 1 (17 novembre 2011): 71–84. http://dx.doi.org/10.1080/17442508.2011.624627.
Testo completoEdwards, D. A. "A simple proof in Monge–Kantorovich duality theory". Studia Mathematica 200, n. 1 (2010): 67–77. http://dx.doi.org/10.4064/sm200-1-4.
Testo completoLevin, V. L. "Best approximation problems relating to Monge-Kantorovich duality". Sbornik: Mathematics 197, n. 9 (31 ottobre 2006): 1353–64. http://dx.doi.org/10.1070/sm2006v197n09abeh003802.
Testo completoGozlan, Nathael, Cyril Roberto, Paul-Marie Samson e Prasad Tetali. "Kantorovich duality for general transport costs and applications". Journal of Functional Analysis 273, n. 11 (dicembre 2017): 3327–405. http://dx.doi.org/10.1016/j.jfa.2017.08.015.
Testo completoOlubummo, Yewande. "On duality for a generalized Monge–Kantorovich problem". Journal of Functional Analysis 207, n. 2 (febbraio 2004): 253–63. http://dx.doi.org/10.1016/j.jfa.2003.10.006.
Testo completoDaryaei, M. H., e A. R. Doagooei. "Topical functions: Hermite-Hadamard type inequalities and Kantorovich duality". Mathematical Inequalities & Applications, n. 3 (2018): 779–93. http://dx.doi.org/10.7153/mia-2018-21-56.
Testo completoCHEN, YONGXIN, WILFRID GANGBO, TRYPHON T. GEORGIOU e ALLEN TANNENBAUM. "On the matrix Monge–Kantorovich problem". European Journal of Applied Mathematics 31, n. 4 (5 agosto 2019): 574–600. http://dx.doi.org/10.1017/s0956792519000172.
Testo completoBOUSCH, THIERRY. "La distance de réarrangement, duale de la fonctionnelle de Bowen". Ergodic Theory and Dynamical Systems 32, n. 3 (5 aprile 2011): 845–68. http://dx.doi.org/10.1017/s014338571000088x.
Testo completoMikami, Toshio. "A simple proof of duality theorem for Monge-Kantorovich problem". Kodai Mathematical Journal 29, n. 1 (marzo 2006): 1–4. http://dx.doi.org/10.2996/kmj/1143122381.
Testo completoTesi sul tema "The Kantorovich duality"
Oliveira, Aline Duarte de. "O teorema da dualidade de Kantorovich para o transporte de ótimo". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2011. http://hdl.handle.net/10183/32470.
Testo completoWe analyze the optimal transport theory proving the Kantorovich duality theorem for a wide class of cost functions. Such result plays an extremely important role in the optimal transport theory. An important tool used here is the Fenchel-Rockafellar duality theorem, which we state and prove in a general case. We also prove the Kantorovich-Rubinstein duality theorem, which deals with the particular case of cost function given by the distance.
Aguiar, Guilherme Ost de. "O Problema de Monge-Kantorovich para o custo quadrático". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2011. http://hdl.handle.net/10183/32384.
Testo completoWe analyze the Monge-Kantorovich optimal transportation problem in the case where the cost function is given by the square of the Euclidean norm. Such cost has a structure which allow us to get more interesting results than the general case. Our main purpose is to determine if there are solutions to such problem and characterize them. We also give an informal treatment to the optimal transportation problem in the general case.
Russo, Daniele. "Introduzione alla Teoria del Trasporto Ottimale e Dualità di Kantorovich". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21788/.
Testo completoNguyen, Van Thanh. "Problèmes de transport partiel optimal et d'appariement avec contrainte". Thesis, Limoges, 2017. http://www.theses.fr/2017LIMO0052.
Testo completoThe manuscript deals with the mathematical and numerical analysis of the optimal partial transport and optimal constrained matching problems. These two problems bring out new unknown quantities, called active submeasures. For the optimal partial transport with Finsler distance costs, we introduce equivalent formulations characterizing active submeasures, Kantorovich potential and optimal flow. In particular, the PDE of optimality condition allows to show the uniqueness of active submeasures. We then study in detail numerical approximations for which the convergence of discretization and numerical simulations are provided. For Lagrangian costs, we derive and justify rigorously characterizations of solution as well as equivalent formulations. Numerical examples are also given. The rest of the thesis presents the study of the optimal constrained matching with the Euclidean distance cost. This problem has a different behaviour compared to the partial transport. The uniqueness of solution and equivalent formulations are studied under geometric condition. The convergence of discretization and numerical examples are also indicated. The main tools which we use in the thesis are some combinations of PDE techniques, optimal transport theory and Fenchel--Rockafellar dual theory. For numerical computation, we make use of augmented Lagrangian methods
Perrone, Paolo. "Categorical Probability and Stochastic Dominance in Metric Spaces". 2018. https://ul.qucosa.de/id/qucosa%3A32641.
Testo completoNguyen, Van thanh. "Problèmes de transport partiel optimal et d'appariement avec contrainte". Thesis, 2017. http://www.theses.fr/2017LIMO0052/document.
Testo completoThe manuscript deals with the mathematical and numerical analysis of the optimal partial transport and optimal constrained matching problems. These two problems bring out new unknown quantities, called active submeasures. For the optimal partial transport with Finsler distance costs, we introduce equivalent formulations characterizing active submeasures, Kantorovich potential and optimal flow. In particular, the PDE of optimality condition allows to show the uniqueness of active submeasures. We then study in detail numerical approximations for which the convergence of discretization and numerical simulations are provided. For Lagrangian costs, we derive and justify rigorously characterizations of solution as well as equivalent formulations. Numerical examples are also given. The rest of the thesis presents the study of the optimal constrained matching with the Euclidean distance cost. This problem has a different behaviour compared to the partial transport. The uniqueness of solution and equivalent formulations are studied under geometric condition. The convergence of discretization and numerical examples are also indicated. The main tools which we use in the thesis are some combinations of PDE techniques, optimal transport theory and Fenchel--Rockafellar dual theory. For numerical computation, we make use of augmented Lagrangian methods
Capitoli di libri sul tema "The Kantorovich duality"
Villani, Cédric. "The Kantorovich duality". In Graduate Studies in Mathematics, 17–46. Providence, Rhode Island: American Mathematical Society, 2003. http://dx.doi.org/10.1090/gsm/058/02.
Testo completoVillani, Cédric. "Cyclical monotonicity and Kantorovich duality". In Grundlehren der mathematischen Wissenschaften, 51–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-71050-9_5.
Testo completoLevin, Vladimir L. "Abstract Convexity and the Monge-Kantorovich Duality". In Lecture Notes in Economics and Mathematical Systems, 33–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-37007-9_2.
Testo completoLu, Xiaojun, e David Yang Gao. "Canonical Duality Method for Solving Kantorovich Mass Transfer Problem". In Advances in Mechanics and Mathematics, 105–26. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58017-3_5.
Testo completoGabriel-Argüelles, José Rigoberto, Martha Lorena Avendaño-Garrido, Luis Antonio Montero e Juan González-Hernández. "Strong Duality of the Kantorovich-Rubinstein Mass Transshipment Problem in Metric Spaces". In Machine Learning, Optimization, and Data Science, 282–92. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13709-0_24.
Testo completoGalichon, Alfred. "Monge–Kantorovich Theory". In Optimal Transport Methods in Economics. Princeton University Press, 2016. http://dx.doi.org/10.23943/princeton/9780691172767.003.0002.
Testo completoAtti di convegni sul tema "The Kantorovich duality"
Dam, Nhan, Quan Hoang, Trung Le, Tu Dinh Nguyen, Hung Bui e Dinh Phung. "Three-Player Wasserstein GAN via Amortised Duality". In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/305.
Testo completo