Segui questo link per vedere altri tipi di pubblicazioni sul tema: The Kantorovich duality.

Articoli di riviste sul tema "The Kantorovich duality"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-18 articoli di riviste per l'attività di ricerca sul tema "The Kantorovich duality".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Ramachandran, Doraiswamy, Doraiswamy Ramachandran, Ludger Ruschendorf e Ludger Ruschendorf. "On the Monge - Kantorovich duality theorem". Teoriya Veroyatnostei i ee Primeneniya 45, n. 2 (2000): 403–9. http://dx.doi.org/10.4213/tvp474.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Zhang, Xicheng. "Stochastic Monge–Kantorovich problem and its duality". Stochastics 85, n. 1 (17 novembre 2011): 71–84. http://dx.doi.org/10.1080/17442508.2011.624627.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Edwards, D. A. "A simple proof in Monge–Kantorovich duality theory". Studia Mathematica 200, n. 1 (2010): 67–77. http://dx.doi.org/10.4064/sm200-1-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Levin, V. L. "Best approximation problems relating to Monge-Kantorovich duality". Sbornik: Mathematics 197, n. 9 (31 ottobre 2006): 1353–64. http://dx.doi.org/10.1070/sm2006v197n09abeh003802.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Gozlan, Nathael, Cyril Roberto, Paul-Marie Samson e Prasad Tetali. "Kantorovich duality for general transport costs and applications". Journal of Functional Analysis 273, n. 11 (dicembre 2017): 3327–405. http://dx.doi.org/10.1016/j.jfa.2017.08.015.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Olubummo, Yewande. "On duality for a generalized Monge–Kantorovich problem". Journal of Functional Analysis 207, n. 2 (febbraio 2004): 253–63. http://dx.doi.org/10.1016/j.jfa.2003.10.006.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Daryaei, M. H., e A. R. Doagooei. "Topical functions: Hermite-Hadamard type inequalities and Kantorovich duality". Mathematical Inequalities & Applications, n. 3 (2018): 779–93. http://dx.doi.org/10.7153/mia-2018-21-56.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

CHEN, YONGXIN, WILFRID GANGBO, TRYPHON T. GEORGIOU e ALLEN TANNENBAUM. "On the matrix Monge–Kantorovich problem". European Journal of Applied Mathematics 31, n. 4 (5 agosto 2019): 574–600. http://dx.doi.org/10.1017/s0956792519000172.

Testo completo
Abstract (sommario):
The classical Monge–Kantorovich (MK) problem as originally posed is concerned with how best to move a pile of soil or rubble to an excavation or fill with the least amount of work relative to some cost function. When the cost is given by the square of the Euclidean distance, one can define a metric on densities called the Wasserstein distance. In this note, we formulate a natural matrix counterpart of the MK problem for positive-definite density matrices. We prove a number of results about this metric including showing that it can be formulated as a convex optimisation problem, strong duality, an analogue of the Poincaré–Wirtinger inequality and a Lax–Hopf–Oleinik–type result.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

BOUSCH, THIERRY. "La distance de réarrangement, duale de la fonctionnelle de Bowen". Ergodic Theory and Dynamical Systems 32, n. 3 (5 aprile 2011): 845–68. http://dx.doi.org/10.1017/s014338571000088x.

Testo completo
Abstract (sommario):
AbstractOn the space of signed invariant measures of Aℕ, one constructs a norm (and hence a distance) that seems to have a particular significance in dynamics. I shall present some of its properties, in particular a duality theorem à la Kantorovich–Rubinshtein, which gives an expression of this distance using couplings.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Mikami, Toshio. "A simple proof of duality theorem for Monge-Kantorovich problem". Kodai Mathematical Journal 29, n. 1 (marzo 2006): 1–4. http://dx.doi.org/10.2996/kmj/1143122381.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Beiglböck, Mathias, Christian Léonard e Walter Schachermayer. "A general duality theorem for the Monge–Kantorovich transport problem". Studia Mathematica 209, n. 2 (2012): 151–67. http://dx.doi.org/10.4064/sm209-2-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Hernández-Lerma, Onésimo, e J. Rigoberto Gabriel. "Strong duality of the Monge-Kantorovich mass transfer problem in metric spaces". Mathematische Zeitschrift 239, n. 3 (1 marzo 2002): 579–91. http://dx.doi.org/10.1007/s002090100325.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Mengue, Jairo K., e Elismar R. Oliveira. "Duality results for iterated function systems with a general family of branches". Stochastics and Dynamics 17, n. 03 (26 marzo 2017): 1750021. http://dx.doi.org/10.1142/s0219493717500216.

Testo completo
Abstract (sommario):
Given [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] compact metric spaces, we consider two iterated function systems [Formula: see text] and [Formula: see text], where [Formula: see text] and [Formula: see text] are contractions. Let [Formula: see text] be the set of probabilities [Formula: see text] with [Formula: see text]-marginal being holonomic with respect to [Formula: see text] and [Formula: see text]-marginal being holonomic with respect to [Formula: see text]. Given [Formula: see text] and [Formula: see text], let [Formula: see text] be the set of probabilities in [Formula: see text] having [Formula: see text]-marginal [Formula: see text] and [Formula: see text]-marginal [Formula: see text]. Let [Formula: see text] be the relative entropy of [Formula: see text] with respect to [Formula: see text] and [Formula: see text] be the relative entropy of [Formula: see text] with respect to [Formula: see text]. Given a cost function [Formula: see text], let [Formula: see text]. We will prove the duality equation: [Formula: see text] In particular, if [Formula: see text] and [Formula: see text] are single points and we drop the entropy, the equation above can be rewritten as the Kantorovich duality for the compact spaces [Formula: see text] and a continuous cost function [Formula: see text].
Gli stili APA, Harvard, Vancouver, ISO e altri
14

ALIBERT, J. J., G. BOUCHITTÉ e T. CHAMPION. "A new class of costs for optimal transport planning". European Journal of Applied Mathematics 30, n. 6 (29 novembre 2018): 1229–63. http://dx.doi.org/10.1017/s0956792518000669.

Testo completo
Abstract (sommario):
We study a class of optimal transport planning problems where the reference cost involves a non-linear function G(x, p) representing the transport cost between the Dirac measure δx and a target probability p. This allows to consider interesting models which favour multi-valued transport maps in contrast with the classical linear case ($G(x,p)=\int c(x,y)dp$) where finding single-valued optimal transport is a key issue. We present an existence result and a general duality principle which apply to many examples. Moreover, under a suitable subadditivity condition, we derive a Kantorovich–Rubinstein version of the dual problem allowing to show existence in some regular cases. We also consider the well studied case of Martingale transport and present some new perspectives for the existence of dual solutions in connection with Γ-convergence theory.
Gli stili APA, Harvard, Vancouver, ISO e altri
15

POWELL, S. "Kantorovich's hidden duality". IMA Journal of Management Mathematics 8, n. 3 (1997): 195–201. http://dx.doi.org/10.1093/imaman/8.3.195.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Ramachandran, D., e L. Rüschendorf. "On the Monge-Kantorovitch Duality Theorem". Theory of Probability & Its Applications 45, n. 2 (gennaio 2001): 350–56. http://dx.doi.org/10.1137/s0040585x97978300.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Chung, Nhan-Phu, e Thanh-Son Trinh. "Unbalanced optimal total variation transport problems and generalized Wasserstein barycenters". Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 4 giugno 2021, 1–27. http://dx.doi.org/10.1017/prm.2021.27.

Testo completo
Abstract (sommario):
In this paper, we establish a Kantorovich duality for unbalanced optimal total variation transport problems. As consequences, we recover a version of duality formula for partial optimal transports established by Caffarelli and McCann; and we also get another proof of Kantorovich–Rubinstein theorem for generalized Wasserstein distance $\widetilde {W}_1^{a,b}$ proved before by Piccoli and Rossi. Then we apply our duality formula to study generalized Wasserstein barycenters. We show the existence of these barycenters for measures with compact supports. Finally, we prove the consistency of our barycenters.
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Ciosmak, Krzysztof J. "Optimal transport of vector measures". Calculus of Variations and Partial Differential Equations 60, n. 6 (19 settembre 2021). http://dx.doi.org/10.1007/s00526-021-02095-2.

Testo completo
Abstract (sommario):
AbstractWe develop and study a theory of optimal transport for vector measures. We resolve in the negative a conjecture of Klartag, that given a vector measure on Euclidean space with total mass zero, the mass of any transport set is again zero. We provide a counterexample to the conjecture. We generalise the Kantorovich–Rubinstein duality to the vector measures setting. Employing the generalisation, we answer the conjecture in the affirmative provided there exists an optimal transport with absolutely continuous marginals of its total variation.
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia