Letteratura scientifica selezionata sul tema "Théorèmes de restriction de Fourier"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Théorèmes de restriction de Fourier".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Théorèmes de restriction de Fourier"

1

Kovač, Vjekoslav. "Fourier restriction implies maximal and variational Fourier restriction." Journal of Functional Analysis 277, no. 10 (2019): 3355–72. http://dx.doi.org/10.1016/j.jfa.2019.03.015.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Demeter, Ciprian, and S. Zubin Gautam. "Bilinear Fourier Restriction Theorems." Journal of Fourier Analysis and Applications 18, no. 6 (2012): 1265–90. http://dx.doi.org/10.1007/s00041-012-9230-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Demeter, Ciprian. "Bourgain’s work in Fourier restriction." Bulletin of the American Mathematical Society 58, no. 2 (2021): 191–204. http://dx.doi.org/10.1090/bull/1717.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Kovač, Vjekoslav, and Diogo Oliveira e Silva. "A variational restriction theorem." Archiv der Mathematik 117, no. 1 (2021): 65–78. http://dx.doi.org/10.1007/s00013-021-01604-1.

Testo completo
Abstract (sommario):
AbstractWe establish variational estimates related to the problem of restricting the Fourier transform of a three-dimensional function to the two-dimensional Euclidean sphere. At the same time, we give a short survey of the recent field of maximal Fourier restriction theory.
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Shayya, Bassam. "Fourier restriction in low fractal dimensions." Proceedings of the Edinburgh Mathematical Society 64, no. 2 (2021): 373–407. http://dx.doi.org/10.1017/s0013091521000201.

Testo completo
Abstract (sommario):
AbstractLet $S \subset \mathbb {R}^{n}$ be a smooth compact hypersurface with a strictly positive second fundamental form, $E$ be the Fourier extension operator on $S$, and $X$ be a Lebesgue measurable subset of $\mathbb {R}^{n}$. If $X$ contains a ball of each radius, then the problem of determining the range of exponents $(p,q)$ for which the estimate $\| Ef \|_{L^{q}(X)} \lesssim \| f \|_{L^{p}(S)}$ holds is equivalent to the restriction conjecture. In this paper, we study the estimate under the following assumption on the set $X$: there is a number $0 < \alpha \leq n$ such that $|X \cap
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Drury, S. W., and B. P. Marshall. "Fourier restriction theorems for degenerate curves." Mathematical Proceedings of the Cambridge Philosophical Society 101, no. 3 (1987): 541–53. http://dx.doi.org/10.1017/s0305004100066901.

Testo completo
Abstract (sommario):
Fourier restriction theorems contain estimates of the formwhere σ is a measure on a smooth manifold M in ∝n. This paper is a continuation of [5], which considered this problem for certain degenerate curves in ∝n. Here estimates are obtained for all curves with degeneracies of finite order. References to previous work on this problem may be found in [5].
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Bruce, Benjamin Baker. "Fourier restriction to a hyperbolic cone." Journal of Functional Analysis 279, no. 3 (2020): 108554. http://dx.doi.org/10.1016/j.jfa.2020.108554.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Carneiro, Emanuel, Diogo Oliveira e Silva, and Mateus Sousa. "Extremizers for Fourier restriction on hyperboloids." Annales de l'Institut Henri Poincaré C, Analyse non linéaire 36, no. 2 (2019): 389–415. http://dx.doi.org/10.1016/j.anihpc.2018.06.001.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Nicola, Fabio. "Slicing surfaces and the Fourier restriction conjecture." Proceedings of the Edinburgh Mathematical Society 52, no. 2 (2009): 515–27. http://dx.doi.org/10.1017/s0013091507000995.

Testo completo
Abstract (sommario):
AbstractWe deal with the restriction phenomenon for the Fourier transform. We prove that each of the restriction conjectures for the sphere, the paraboloid and the elliptic hyperboloid in ℝn implies that for the cone in ℝn+1. We also prove a new restriction estimate for any surface in ℝ3 locally isometric to the plane and of finite type.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Carbery, Anthony. "Restriction implies Bochner–Riesz for paraboloids." Mathematical Proceedings of the Cambridge Philosophical Society 111, no. 3 (1992): 525–29. http://dx.doi.org/10.1017/s0305004100075599.

Testo completo
Abstract (sommario):
Let Σ ⊆ ℝn be a (compact) hypersurface with non-vanishing Gaussian curvature, with suitable parameterizations, also called Σ: U → ℝn (U open patches in ℝn−1). The restriction problem for Σ is the question of the a priori estimate (for f ∈ S(ℝ))(^denoting the Fourier transform). The Bochner-Riesz problem for Σ is the question of whether the functionsdefine Lp-bounded Fourier multiplier operators on ℝn in the range.
Gli stili APA, Harvard, Vancouver, ISO e altri
Più fonti
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!