Letteratura scientifica selezionata sul tema "Transient nonlinear bioheat transfer"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Transient nonlinear bioheat transfer".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Transient nonlinear bioheat transfer"
Zhang, Ze-Wei, Hui Wang e Qing-Hua Qin. "Meshless Method with Operator Splitting Technique for Transient Nonlinear Bioheat Transfer in Two-Dimensional Skin Tissues". International Journal of Molecular Sciences 16, n. 1 (16 gennaio 2015): 2001–19. http://dx.doi.org/10.3390/ijms16012001.
Testo completoLiu, Kuo-Chi, e Fong-Jou Tu. "Numerical Solution of Bioheat Transfer Problems with Transient Blood Temperature". International Journal of Computational Methods 16, n. 04 (13 maggio 2019): 1843001. http://dx.doi.org/10.1142/s0219876218430016.
Testo completoLuitel, Kabita, Dil Bahadur Gurung, Harihar Khanal e Kedar Nath Uprety. "Bioheat Transfer Equation with Protective Layer". Mathematical Problems in Engineering 2021 (25 gennaio 2021): 1–12. http://dx.doi.org/10.1155/2021/6639550.
Testo completoDeng, Zhong-Shan, e Jing Liu. "Analytical Study on Bioheat Transfer Problems with Spatial or Transient Heating on Skin Surface or Inside Biological Bodies". Journal of Biomechanical Engineering 124, n. 6 (1 dicembre 2002): 638–49. http://dx.doi.org/10.1115/1.1516810.
Testo completoZHANG, ZE-WEI, HUI WANG e QING-HUA QIN. "METHOD OF FUNDAMENTAL SOLUTIONS FOR NONLINEAR SKIN BIOHEAT MODEL". Journal of Mechanics in Medicine and Biology 14, n. 04 (3 luglio 2014): 1450060. http://dx.doi.org/10.1142/s0219519414500602.
Testo completoMajchrzak, E., Bohdan Mochnacki, M. Dziewoński e M. Jasiński. "Numerical Modelling of Hyperthermia and Hypothermia Processes". Advanced Materials Research 268-270 (luglio 2011): 257–62. http://dx.doi.org/10.4028/www.scientific.net/amr.268-270.257.
Testo completoZhang, Ze Wei, Hui Wang e Qing Hua Qin. "Analysis of Transient Bioheat Transfer in the Human Eye Using Hybrid Finite Element Model". Applied Mechanics and Materials 553 (maggio 2014): 356–61. http://dx.doi.org/10.4028/www.scientific.net/amm.553.356.
Testo completoZomordikhani, Zahed, Mohammadmahdi Attar, Alireza Jahangiri e Farzan Barati. "Analysis of nonlinear bioheat transfer equation in magnetic fluid hyperthermia". Journal of Mechanical Science and Technology 34, n. 9 (settembre 2020): 3911–18. http://dx.doi.org/10.1007/s12206-020-0841-9.
Testo completoAhmedou Bamba, Salem, e Abdellatif Ellabib. "Nonoverlapping Dirichlet–Neumann method for transient bioheat transfer in the human eye". International Journal of Biomathematics 13, n. 05 (28 maggio 2020): 2050035. http://dx.doi.org/10.1142/s1793524520500357.
Testo completoChan, Cho Lik. "Boundary Element Method Analysis for the Bioheat Transfer Equation". Journal of Biomechanical Engineering 114, n. 3 (1 agosto 1992): 358–65. http://dx.doi.org/10.1115/1.2891396.
Testo completoTesi sul tema "Transient nonlinear bioheat transfer"
Buckley, Donovan O. "Solution of Nonlinear Transient Heat Transfer Problems". FIU Digital Commons, 2010. http://digitalcommons.fiu.edu/etd/302.
Testo completoKorvink, Jan Gerrit. "Transient nonlinear heat transfer using finite elements". Master's thesis, University of Cape Town, 1986. http://hdl.handle.net/11427/17618.
Testo completoThis thesis is concerned with the numerical modelling of the transient nonlinear heat conduction problem in solid continua. The hyperbolic governing equation is specialised to a parabolic equation which is sufficient for most engineering applications. The theoretical development includes the effects of conduction, specific heat, internal heat generation and the boundary conditions of convection, radiation, specified temperatures and flux, as well as point sources in the domain. The finite element spatial semidiscretisation of the equations is formally derived from the weak form of the governing equations. Temporal discretisation is obtained through an implicit/explicit difference scheme. The material properties are allowed to be temperature dependent, and consequently a modified Newton-Raphson iterative scheme is employed to solve the equations. The fully discretised equations are solved by implementing the algorithm in an existing finite element stress analysis code. Modelling is possible using four or eight-noded isoparametric elements, and solution control is possible through choice of time step size and choice of time integration method. Five examples are employed to demonstrate the ability of the program. The results compare well with published analytical solutions.
French, L. de F. "Transient nonlinear heat transfer analysis using the finite element method in the context of the requirements of thermal analysis in a mine". Master's thesis, University of Cape Town, 1990. http://hdl.handle.net/11427/8297.
Testo completoThe aim of this thesis is to develop a computer program, together with a users' guide, to analyse two-dimensional; nonlinear, transient heat conduction in non-isotropic solids using the finite element method. This program is an extension of an existing program that analyses thermomechanical stress in solids which may have prescribed temperature and flux boundary conditions. The program has been extended using the requirements for modelling heat transfer in mines as a guide. The theory of conduction, thermal radiation, convection and heat transfer due to evaporation and condensation is presented.
Liu, Li. "Propriétés photo-physiques de nouveaux matériaux moléculaires pour la conversion de photons en énergie". Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAE010/document.
Testo completoVarious photo-induced energy and energy transfer processes were investigated in solution and in the film by transient absorption and fluorescence spectroscopies for two types of solar cells. Combined with other experiments and through a global analysis, those ultrafast phenomena with their lifetimes were observed and the photo-induced scenarios were determined. The insight understanding of molecular materials could help chemists to design efficient solar cells.The first study about the influence of chemical designs on charge formation and separation involves different donor moieties and different solvents and the results were explained by Marcus-Jortner theory combined with quantum calculationThe second investigation is about Fe(II) complexes as photosensitizers for dye-sensitized solar cells. A series of homo- and heteroleptic Fe(II) complexes with carbene and terpyridine ligands have been studied in solution and in the film. The record triplet metal-to-ligand charge transfer state lifetime of Fe(II) complex is achieved in solution. The further understanding in the film is in progress
Zhang, Zewei. "Transient bioheat transfer analysis in biological tissues by fundamental-solution-based numerical methods". Phd thesis, 2015. http://hdl.handle.net/1885/15827.
Testo completoLibri sul tema "Transient nonlinear bioheat transfer"
National Aeronautics and Space Administration (NASA) Staff. Nonlinear Transient Problems Using Structure Compatible Heat Transfer Code. Independently Published, 2018.
Cerca il testo completoCina, Jeffrey A. Getting Started on Time-Resolved Molecular Spectroscopy. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780199590315.001.0001.
Testo completoCapitoli di libri sul tema "Transient nonlinear bioheat transfer"
HEATON, J. M., e L. SOLYMAR. "Transient energy transfer during hologram formation in photorefractive crystals". In Landmark Papers on Photorefractive Nonlinear Optics, 223–34. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789812832047_0024.
Testo completoJoel Moitsheki, Raseelo, Partner Luyanda Ndlovu e Basetsana Pauline Ntsime. "Survey of Some Exact and Approximate Analytical Solutions for Heat Transfer in Extended Surfaces". In Heat Transfer - Design, Experimentation and Applications. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95490.
Testo completoC. Mehta, Rakhab. "Influence of Input Parameters on the Solution of Inverse Heat Conduction Problem". In Inverse Heat Conduction and Heat Exchangers. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.91000.
Testo completoDeliiski, Nencho, Ladislav Dzurenda e Natalia Tumbarkova. "Modeling of the Two-Dimensional Thawing of Logs in an Air Environment". In Modeling and Simulation in Engineering - Selected Problems. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93177.
Testo completoAtti di convegni sul tema "Transient nonlinear bioheat transfer"
Biniazan, Maral, e Kamran Mohseni. "Inverse Heat Transfer Analysis of Micro Heater Strength and Locations for Hyperthermia Treatment of Brain Tumors". In ASME 2007 2nd Frontiers in Biomedical Devices Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/biomed2007-38046.
Testo completoEcheverria, Esteban, e Chandrasekhar Thamire. "Development of an Ultrasound Hyperthermia Simulator for Therapeutic Applications". In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64205.
Testo completoKolios, Michael C., Michael D. Sherar e John W. Hunt. "Temperature Dependent Tissue Properties and Ultrasonic Lesion Formation". In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0591.
Testo completoSarkar, Daipayan, A. Haji-Sheikh e Ankur Jain. "Theoretical Analysis of Transient Bioheat Transfer in Multi-Layer Tissue". In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53392.
Testo completoAl-Othmani, Mohamad, Nesreen Ghaddar e Kamel Ghali. "Transient Human Thermal Comfort Response in Convective and Radiative Environments". In ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/ht2008-56101.
Testo completoKudryashov, Nikolay A., e Kirill E. Shilnikov. "Nonlinear bioheat transfer models and multi-objective numerical optimization of the cryosurgery operations". In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM 2015). Author(s), 2016. http://dx.doi.org/10.1063/1.4952018.
Testo completoKengne, Emmanuel, Idir Mellal e Ahmed Lakhssassi. "Bioheat transfer problems with spatial or transient heating on skin surface or inside biological bodies". In 2014 7th International Conference on Biomedical Engineering and Informatics (BMEI). IEEE, 2014. http://dx.doi.org/10.1109/bmei.2014.7002880.
Testo completoGayzik, F. Scott, Elaine P. Scott e Tahar Loulou. "Optimal Control of Thermal Damage to Targetted Regions in a Biological Material". In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56426.
Testo completoWestin, Johan K., Jayanta S. Kapat e Louis C. Chow. "Evaluating a Thermoregulatory Model for Cooling Garment Applications With Transient Metabolic Rates". In ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/ht2008-56319.
Testo completoZhou, X., K. Tamma e D. Sha. "Recent developments in linear/nonlinear computational algorithms for transient heat transfer". In 39th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-370.
Testo completo