Letteratura scientifica selezionata sul tema "Tumor xenograft"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Tumor xenograft".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Tumor xenograft"
Siu, I.-Mei, Vafi Salmasi, Brent A. Orr, Qi Zhao, Zev A. Binder, Christine Tran, Masaru Ishii, Gregory J. Riggins, Christine L. Hann e Gary L. Gallia. "Establishment and characterization of a primary human chordoma xenograft model". Journal of Neurosurgery 116, n. 4 (aprile 2012): 801–9. http://dx.doi.org/10.3171/2011.12.jns111123.
Testo completoSicklick, Jason Keith, Stephanie Yvette Leonard, Evangeline Mose, Randall P. French, Michele Criscuoli, Dawn V. Jaquish, Karly Maruyama, Richard B. Schwab, David Cheresh e Andrew M. Lowy. "A novel xenograft model of gastrointestinal stromal tumors." Journal of Clinical Oncology 30, n. 4_suppl (1 febbraio 2012): 202. http://dx.doi.org/10.1200/jco.2012.30.4_suppl.202.
Testo completoDavies, Jason M., Aaron E. Robinson, Cynthia Cowdrey, Praveen V. Mummaneni, Gregory S. Ducker, Kevan M. Shokat, Andrew Bollen, Byron Hann e Joanna J. Phillips. "Generation of a patient-derived chordoma xenograft and characterization of the phosphoproteome in a recurrent chordoma". Journal of Neurosurgery 120, n. 2 (febbraio 2014): 331–36. http://dx.doi.org/10.3171/2013.10.jns13598.
Testo completoDong, Yiyu, Brandon Manley, A. Ari Hakimi, Jonathan A. Coleman, Paul Russo e James Hsieh. "Comparing surgical tissue versus biopsy tissue in the development of a clear cell renal cell carcinoma xenograft model." Journal of Clinical Oncology 34, n. 2_suppl (10 gennaio 2016): 519. http://dx.doi.org/10.1200/jco.2016.34.2_suppl.519.
Testo completoLukbanova, E. A., M. V. Mindar, E. A. Dzhenkova, A. Yu Maksimov, A. S. Goncharova, Yu S. Shatova, A. A. Maslov, A. V. Shaposhnikov, E. V. Zaikina e Yu N. Lazutin. "Experimental approach to obtaining subcutaneous xenograft of non-small cell lung cancer". Research and Practical Medicine Journal 9, n. 2 (4 maggio 2022): 65–76. http://dx.doi.org/10.17709/2410-1893-2022-9-2-5.
Testo completoBreij, Esther CW, David Satijn, Sandra Verploegen, Bart de Goeij, Danita Schuurhuis, Wim Bleeker, Mischa Houtkamp e Paul Parren. "Use of an antibody-drug conjugate targeting tissue factor to induce complete tumor regression in xenograft models with heterogeneous target expression." Journal of Clinical Oncology 31, n. 15_suppl (20 maggio 2013): 3066. http://dx.doi.org/10.1200/jco.2013.31.15_suppl.3066.
Testo completoDougherty, Mark, Eric Taylor e Marlan Hansen. "TMET-34. RADIATION METABOLOMICS IN PRIMARY HUMAN MENINGIOMA AND SCHWANNOMA: EARLY EXPERIENCE AND INITIAL RESULTS". Neuro-Oncology 24, Supplement_7 (1 novembre 2022): vii269. http://dx.doi.org/10.1093/neuonc/noac209.1039.
Testo completoJeuken, Judith W. M., Sandra H. E. Sprenger, Pieter Wesseling, Hans J. J. A. Bernsen, Ron F. Suijkerbuijk, Femke Roelofs, Merryn V. E. Macville, H. Jacobus Gilhuis, Jacobus J. van Overbeeke e Rudolf H. Boerman. "Genetic reflection of glioblastoma biopsy material in xenografts: characterization of 11 glioblastoma xenograft lines by comparative genomic hybridization". Journal of Neurosurgery 92, n. 4 (aprile 2000): 652–58. http://dx.doi.org/10.3171/jns.2000.92.4.0652.
Testo completoSingh, Kanika, Negar Jamshidi, Roby Zomer, Terrence J. Piva e Nitin Mantri. "Cannabinoids and Prostate Cancer: A Systematic Review of Animal Studies". International Journal of Molecular Sciences 21, n. 17 (29 agosto 2020): 6265. http://dx.doi.org/10.3390/ijms21176265.
Testo completoDobbin, Zachary C., Ashwini A. Katre, Angela Ziebarth, Monjri Shah, Adam D. Steg, Ronald David Alvarez, Michael G. Conner e Charles N. Landen. "Use of an optimized primary ovarian cancer xenograft model to mimic patient tumor biology and heterogeneity." Journal of Clinical Oncology 30, n. 15_suppl (20 maggio 2012): 5036. http://dx.doi.org/10.1200/jco.2012.30.15_suppl.5036.
Testo completoTesi sul tema "Tumor xenograft"
Williams, K. J., M. R. Albertella, B. Fitzpatrick, Paul M. Loadman, Steven D. Shnyder, E. C. Chinje, B. A. Telfer, C. R. Dunk, P. A. Harris e I. J. Stratford. "In vivo activation of the hypoxia-targeted cytotoxin AQ4N in human tumor xenograft". AACR Publications, 2009. http://hdl.handle.net/10454/4561.
Testo completoAQ4N (banoxantrone) is a prodrug that, under hypoxic conditions, is enzymatically converted to a cytotoxic DNA-binding agent, AQ4. Incorporation of AQ4N into conventional chemoradiation protocols therefore targets both oxygenated and hypoxic regions of tumors, and potentially will increase the effectiveness of therapy. This current pharmacodynamic and efficacy study was designed to quantify tumor exposure to AQ4 following treatment with AQ4N, and to relate exposure to outcome of treatment. A single dose of 60 mg/kg AQ4N enhanced the response of RT112 (bladder) and Calu-6 (lung) xenografts to treatment with cisplatin and radiation therapy. AQ4N was also given to separate cohorts of tumor-bearing mice 24 hours before tumor excision for subsequent analysis of metabolite levels. AQ4 was detected by high performance liquid chromatography/mass spectrometry in all treated samples of RT112 and Calu-6 tumors at mean concentrations of 0.23 and 1.07 microg/g, respectively. These concentrations are comparable with those shown to be cytotoxic in vitro. AQ4-related nuclear fluorescence was observed in all treated tumors by confocal microscopy, which correlated with the high performance liquid chromatography/mass spectrometry data. The presence of the hypoxic marker Glut-1 was shown by immunohistochemistry in both Calu-6 tumors and RT112 tumors, and colocalization of AQ4 fluorescence and Glut-1 staining strongly suggested that AQ4N was activated in these putatively hypoxic areas. This is the first demonstration that AQ4N will increase the efficacy of chemoradiotherapy in preclinical models; the intratumoral levels of AQ4 found in this study are comparable with tumor AQ4 levels found in a recent phase I clinical study, which suggests that these levels could be potentially therapeutic.
Tin, Man Ying. "Study of the anticarcinogenic mechanisms of astragalus membranaceus in colon cancer cells and tumor xenograft". HKBU Institutional Repository, 2006. http://repository.hkbu.edu.hk/etd_ra/777.
Testo completoTabassum, Doris Priscilla. "Exploring Intra-tumor Cooperation in Metastasis and Drug Resistance using Heterogeneous Xenograft Models of Breast Cancer". Thesis, Harvard University, 2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493472.
Testo completoMedical Sciences
Volk, Lisa Danielle. "The Combination of Nab-Paclitaxel and Bevacizumab Therapy Synergistically Improves Tumor Response in Xenograft Breast Cancer Models". Available to subscribers only, 2008. http://proquest.umi.com/pqdweb?did=1674100511&sid=1&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Testo completo"Department of Medical Microbiology, Immunology, and Cell Biology." Includes bibliographical references (p. 86-119). Also available online.
Maekawa, Hisatsugu. "A Chemosensitivity Study of Colorectal Cancer Using Xenografts of Patient-Derived Tumor Initiating Cells". Kyoto University, 2018. http://hdl.handle.net/2433/235985.
Testo completoYoshida, Toru. "Antiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft model derived from a bicalutamide-treated patient". Kyoto University, 2006. http://hdl.handle.net/2433/135622.
Testo completoMaftei, Constantin Alin Verfasser], Christine [Akademischer Betreuer] Bayer, Peter [Akademischer Betreuer] [Vaupel e Gabriele [Akademischer Betreuer] Multhoff. "Determination of the dynamics of tumor hypoxia during radiation therapy using biological imaging on mouse xenograft tumors / Constantin Alin Maftei. Gutachter: Peter Vaupel ; Gabriele Multhoff. Betreuer: Christine Bayer". München : Universitätsbibliothek der TU München, 2013. http://d-nb.info/1034134779/34.
Testo completoLiwschitz, Maxim [Verfasser]. "Wirkungen einer kombinierten Hemmung von Angiopoetin 2 und VEGF auf die Tumor-Angiogenese in einem Xenograft-Maus-Modell des kolonrektalen Karzinoms / Maxim Liwschitz". Köln : Deutsche Zentralbibliothek für Medizin, 2016. http://d-nb.info/1084240637/34.
Testo completoTanaka, Kuniaki. "Direct Delivery of piggyBac CD19 CAR T Cells Has Potent Anti-tumor Activity against ALL Cells in CNS in a Xenograft Mouse Model". Kyoto University, 2021. http://hdl.handle.net/2433/261609.
Testo completoHuang, Yingbo. "Intrapulmonary Inoculation of Multicellular Tumor Spheroids to Construct an Orthotopic Lung Cancer Xenograft Model that Mimics Four Clinical Stages of Non-small Cell Lung Cancer". Scholarly Commons, 2019. https://scholarlycommons.pacific.edu/uop_etds/3596.
Testo completoLibri sul tema "Tumor xenograft"
Winograd, Benjamin, Michael Peckham e Herbert Michael Pinedo, a cura di. Human Tumour Xenografts in Anticancer Drug Development. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73252-2.
Testo completoSeminar on Human Tumour Xenografts (1986 Milan, Italy). Human tumour xenografts in anticancer drug development. Berlin: Springer-Verlag, 1988.
Cerca il testo completoB, Winograd, Peckham Michael J, Pinedo H. M e European School of Oncology, a cura di. Human tumour xenografts in anticancer drug development. Berlin: Springer, 1988.
Cerca il testo completoPatient Derived Tumor Xenograft Models. Elsevier, 2017. http://dx.doi.org/10.1016/c2015-0-00204-0.
Testo completoUthamanthil, Rajesh, Peggy Tinkey e Elisa de Stanchina. Patient Derived Tumor Xenograft Models: Promise, Potential and Practice. Elsevier Science & Technology Books, 2016.
Cerca il testo completoTinkey, Peggy, Elisa de Stanchina e Rajesh K. Uthamanthil. Patient Derived Tumor Xenograft Models: Promise, Potential and Practice. Elsevier Science & Technology Books, 2016.
Cerca il testo completoWinograd, Benjamin. Human Tumour Xenografts in Anticancer Drug Development. Springer, 2012.
Cerca il testo completoPinedo, Herbert M., Michael Peckham e Benjamin Winograd. Human Tumour Xenografts in Anticancer Drug Development. Springer London, Limited, 2013.
Cerca il testo completo(Editor), H. M. Pinedo, a cura di. Human Tumour Xenografts in Anticancer Drug Development (Eso Monographs (European School of Oncology)). Springer, 1988.
Cerca il testo completoCapitoli di libri sul tema "Tumor xenograft"
Liu, Ming, e Daniel Hicklin. "Human Tumor Xenograft Efficacy Models". In Tumor Models in Cancer Research, 99–124. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-968-0_5.
Testo completoPresta, Marco, Giulia De Sena e Chiara Tobia. "The Zebrafish/Tumor Xenograft Angiogenesis Assay". In The Textbook of Angiogenesis and Lymphangiogenesis: Methods and Applications, 253–68. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4581-0_16.
Testo completoLin, Dong, Xinya Wang, Peter W. Gout e Yuzhuo Wang. "Patient-Derived Tumor Xenografts: Historical Background". In Patient-Derived Xenograft Models of Human Cancer, 1–9. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55825-7_1.
Testo completoAnnibali, Daniela, Eleonora Leucci, Els Hermans e Frédéric Amant. "Development of Patient-Derived Tumor Xenograft Models". In Metabolic Signaling, 217–25. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8769-6_15.
Testo completoDong, Xin, Peter W. Gout, Lu Yi, Yinhuai Wang, Yong Xu e Kuo Yang. "First-Generation Tumor Xenografts: A Link Between Patient-Derived Xenograft Models and Clinical Disease". In Patient-Derived Xenograft Models of Human Cancer, 155–76. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55825-7_11.
Testo completoAlley, Michael C., Melinda G. Hollingshead, Donald J. Dykes e William R. Waud. "Human Tumor Xenograft Models in NCI Drug Development". In Anticancer Drug Development Guide, 125–52. Totowa, NJ: Humana Press, 2004. http://dx.doi.org/10.1007/978-1-59259-739-0_7.
Testo completoSuarez, Christopher D., e Laurie E. Littlepage. "Patient-Derived Tumor Xenograft Models of Breast Cancer". In Methods in Molecular Biology, 211–23. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3444-7_19.
Testo completoPlowman, Jacqueline, Donald J. Dykes, Melinda Hollingshead, Linda Simpson-Herren e Michael C. Alley. "Human Tumor Xenograft Models in NCI Drug Development". In Anticancer Drug Development Guide, 101–25. Totowa, NJ: Humana Press, 1997. http://dx.doi.org/10.1007/978-1-4615-8152-9_6.
Testo completoDavies, Alastair H., Fraser Johnson, Kirsi Ketola e Amina Zoubeidi. "The Plasticity of Stem-Like States in Patient-Derived Tumor Xenografts". In Patient-Derived Xenograft Models of Human Cancer, 71–91. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55825-7_6.
Testo completoLukiewicz, Stanislaw, Przemyslaw Plonka, Beata Plonka, Jolanta Raczek, Stanislawa Pajak e Krystyna Cieszka. "Animal EPR Studies on Allo- and Xenograft Rejection". In Nitric Oxide in Transplant Rejection and Anti-Tumor Defense, 157–87. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5081-5_10.
Testo completoAtti di convegni sul tema "Tumor xenograft"
Singh, Nagendra S., e Irving W. Wainer. "Abstract B32: GRP55 antagonists alter tumor microenvironment and inhibit tumor growth in a pancreatic tumor xenograft model". In Abstracts: AACR Special Conference on Pancreatic Cancer: Advances in Science and Clinical Care; May 12-15, 2016; Orlando, FL. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.panca16-b32.
Testo completoRoy, Somdutta, Kevin Martinez, Arturo Ramirez, Daniel Campton, Joshua Nordberg, Eric Kaldjian, Scott J. Dylla e Holger Karsunky. "Abstract 646: Feasibility of assessing circulating tumor cells in patient-derived xenograft tumor models". In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-646.
Testo completoPark, Gyeongsin, Byunghoo Song, Seonghak Lee, Chan Kwon Jung Jung, Ahwon Lee, Yang-Guk Chung, Yeong-Jin Choi, Kyo-Young Lee e Chang Suk Kang. "Abstract 5164: Mesenchymal stromal cells promote tumor engraftment and progression in tumor xenograft model." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-5164.
Testo completoIbrahimov, Emin, Nhu-An Pham, Fannong Meng, Mayleen Sukhram, Dianne Chadwick, Stefano Serra, Patricia Shaw et al. "Abstract B91: Primary tumor xenograft establishment from pancreatic resection specimens." In Abstracts: AACR Special Conference on Pancreatic Cancer: Progress and Challenges; June 18-21, 2012; Lake Tahoe, NV. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.panca2012-b91.
Testo completoFerenci, Tamas, Johanna Sapi e Levente Kovacs. "Modelling xenograft tumor growth under antiangiogenic inhibitation with mixed-effects models". In 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2016. http://dx.doi.org/10.1109/smc.2016.7844845.
Testo completoBasel, Matthew T., Sanjeev Narayanan, Chanran Ganta, Tej B. Shrestha, Marla Pyle, Stefan H. Bossmann e Deryl L. Troyer. "Abstract 4820: Developing a xenograft human tumor model in immunocompetent mice". In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-4820.
Testo completoLiu, Haoyan, Nagma Vohra, Keith Bailey, Magda El-Shenawee e Alexander Nelson. "Semantic Segmentation of Xenograft Tumor Tissues Imaged with Pulsed Terahertz Technology". In 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/USNC-URSI). IEEE, 2022. http://dx.doi.org/10.1109/ap-s/usnc-ursi47032.2022.9887166.
Testo completoSiu, I.-Mei, Peter C. Burger, Qi Zhao, Jacob Ruzevick, Nick Connis, Christine L. Hann e Gary L. Gallia. "Abstract 360: Erlotinib inhibits growth of a patient derived chordoma tumor xenograft." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-360.
Testo completoWulf-Goldenberg, Annika, Maria Stecklum, Iduna Fichtner e Jens Hoffmann. "Abstract 5200: Preclinical model of patient-derived tumor xenograft in humanized mice". In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-5200.
Testo completoSchueler, Julia, Mariette Heins, Artem Shatillo, Kimmo Lehtimäki, Anne-Lise Peille, Taina-Kaisa Stenius, Timo Bragge, Jussi Rytkönen, Diana Miszczuk e Tuulia Huhtala. "Abstract 2774: Longitudinal characterization of patient-derived orthotopic xenograft brain tumor models". In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-2774.
Testo completoRapporti di organizzazioni sul tema "Tumor xenograft"
Li, Xiao-Nan. Harnessing Autopsied DIPG Tumor Tissues for Orthotopic Xenograft Model Development in the Brain Stems of SCID Mice. Fort Belvoir, VA: Defense Technical Information Center, settembre 2012. http://dx.doi.org/10.21236/ada568355.
Testo completo