Letteratura scientifica selezionata sul tema "Uncertainty Quantification model"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Uncertainty Quantification model".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Uncertainty Quantification model"

1

Salehghaffari, S., and M. Rais-Rohani. "Material model uncertainty quantification using evidence theory." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 227, no. 10 (2013): 2165–81. http://dx.doi.org/10.1177/0954406212473390.

Testo completo
Abstract (sommario):
Uncertainties in material models and their influence on structural behavior and reliability are important considerations in analysis and design of structures. In this article, a methodology based on the evidence theory is presented for uncertainty quantification of constitutive models. The proposed methodology is applied to Johnson–Cook plasticity model while considering various sources of uncertainty emanating from experimental stress–strain data as well as method of fitting the model constants and representation of the nondimensional temperature. All uncertain parameters are represented in i
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Vallam, P., X. S. Qin, and J. J. Yu. "Uncertainty Quantification of Hydrologic Model." APCBEE Procedia 10 (2014): 219–23. http://dx.doi.org/10.1016/j.apcbee.2014.10.042.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Guo, Xianpeng, Dezhi Wang, Lilun Zhang, Yongxian Wang, Wenbin Xiao, and Xinghua Cheng. "Uncertainty Quantification of Underwater Sound Propagation Loss Integrated with Kriging Surrogate Model." International Journal of Signal Processing Systems 5, no. 4 (2017): 141–45. http://dx.doi.org/10.18178/ijsps.5.4.141-145.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Franck, Isabell M., and P. S. Koutsourelakis. "Constitutive model error and uncertainty quantification." PAMM 17, no. 1 (2017): 865–68. http://dx.doi.org/10.1002/pamm.201710400.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

de Vries, Douwe K., and Paul M. J. Den Van Hof. "Quantification of model uncertainty from data." International Journal of Robust and Nonlinear Control 4, no. 2 (1994): 301–19. http://dx.doi.org/10.1002/rnc.4590040206.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Kamga, P. H. T., B. Li, M. McKerns, et al. "Optimal uncertainty quantification with model uncertainty and legacy data." Journal of the Mechanics and Physics of Solids 72 (December 2014): 1–19. http://dx.doi.org/10.1016/j.jmps.2014.07.007.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Liu, Chang, and Duane A. McVay. "Continuous Reservoir-Simulation-Model Updating and Forecasting Improves Uncertainty Quantification." SPE Reservoir Evaluation & Engineering 13, no. 04 (2010): 626–37. http://dx.doi.org/10.2118/119197-pa.

Testo completo
Abstract (sommario):
Summary Most reservoir-simulation studies are conducted in a static context—at a single point in time using a fixed set of historical data for history matching. Time and budget constraints usually result in significant reduction in the number of uncertain parameters and incomplete exploration of the parameter space, which results in underestimation of forecast uncertainty and less-than-optimal decision making. Markov Chain Monte Carlo (MCMC) methods have been used in static studies for rigorous exploration of the parameter space for quantification of forecast uncertainty, but these methods suf
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Cheng, Xi, Clément Henry, Francesco P. Andriulli, Christian Person, and Joe Wiart. "A Surrogate Model Based on Artificial Neural Network for RF Radiation Modelling with High-Dimensional Data." International Journal of Environmental Research and Public Health 17, no. 7 (2020): 2586. http://dx.doi.org/10.3390/ijerph17072586.

Testo completo
Abstract (sommario):
This paper focuses on quantifying the uncertainty in the specific absorption rate values of the brain induced by the uncertain positions of the electroencephalography electrodes placed on the patient’s scalp. To avoid running a large number of simulations, an artificial neural network architecture for uncertainty quantification involving high-dimensional data is proposed in this paper. The proposed method is demonstrated to be an attractive alternative to conventional uncertainty quantification methods because of its considerable advantage in the computational expense and speed.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Sun, Xianming, and Michèle Vanmaele. "Uncertainty Quantification of Derivative Instruments." East Asian Journal on Applied Mathematics 7, no. 2 (2017): 343–62. http://dx.doi.org/10.4208/eajam.100316.270117a.

Testo completo
Abstract (sommario):
AbstractModel and parameter uncertainties are common whenever some parametric model is selected to value a derivative instrument. Combining the Monte Carlo method with the Smolyak interpolation algorithm, we propose an accurate efficient numerical procedure to quantify the uncertainty embedded in complex derivatives. Except for the value function being sufficiently smooth with respect to the model parameters, there are no requirements on the payoff or candidate models. Numerical tests carried out quantify the uncertainty of Bermudan put options and down-and-out put options under the Heston mod
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Herty, Michael, and Elisa Iacomini. "Uncertainty quantification in hierarchical vehicular flow models." Kinetic and Related Models 15, no. 2 (2022): 239. http://dx.doi.org/10.3934/krm.2022006.

Testo completo
Abstract (sommario):
<p style='text-indent:20px;'>We consider kinetic vehicular traffic flow models of BGK type [<xref ref-type="bibr" rid="b24">24</xref>]. Considering different spatial and temporal scales, those models allow to derive a hierarchy of traffic models including a hydrodynamic description. In this paper, the kinetic BGK–model is extended by introducing a parametric stochastic variable to describe possible uncertainty in traffic. The interplay of uncertainty with the given model hierarchy is studied in detail. Theoretical results on consistent formulations of the stochastic different
Gli stili APA, Harvard, Vancouver, ISO e altri
Più fonti
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!