Indice
Letteratura scientifica selezionata sul tema "Underdamped Langevin diffusion"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Underdamped Langevin diffusion".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Underdamped Langevin diffusion"
Chen, Yao, e Xudong Wang. "Novel anomalous diffusion phenomena of underdamped Langevin equation with random parameters". New Journal of Physics 23, n. 12 (1 dicembre 2021): 123024. http://dx.doi.org/10.1088/1367-2630/ac3db9.
Testo completoFutami, Futoshi, Tomoharu Iwata, Naonori Ueda e Issei Sato. "Accelerated Diffusion-Based Sampling by the Non-Reversible Dynamics with Skew-Symmetric Matrices". Entropy 23, n. 8 (30 luglio 2021): 993. http://dx.doi.org/10.3390/e23080993.
Testo completoRegev, Shaked, e Oded Farago. "Application of underdamped Langevin dynamics simulations for the study of diffusion from a drug-eluting stent". Physica A: Statistical Mechanics and its Applications 507 (ottobre 2018): 231–39. http://dx.doi.org/10.1016/j.physa.2018.05.082.
Testo completoNüske, Feliks, Péter Koltai, Lorenzo Boninsegna e Cecilia Clementi. "Spectral Properties of Effective Dynamics from Conditional Expectations". Entropy 23, n. 2 (21 gennaio 2021): 134. http://dx.doi.org/10.3390/e23020134.
Testo completoMonmarché, Pierre. "High-dimensional MCMC with a standard splitting scheme for the underdamped Langevin diffusion." Electronic Journal of Statistics 15, n. 2 (1 gennaio 2021). http://dx.doi.org/10.1214/21-ejs1888.
Testo completoTesi sul tema "Underdamped Langevin diffusion"
Enfroy, Aurélien. "Contributions à la conception, l'étude et la mise en œuvre de méthodes de Monte Carlo par chaîne de Markov appliquées à l'inférence bayésienne". Electronic Thesis or Diss., Institut polytechnique de Paris, 2022. http://www.theses.fr/2022IPPAS012.
Testo completoThis thesis focuses on the analysis and design of Markov chain Monte Carlo (MCMC) methods used in high-dimensional sampling. It consists of three parts.The first part introduces a new class of Markov chains and MCMC methods. These methods allow to improve MCMC methods by using samples targeting a restriction of the original target distribution on a domain chosen by the user. This procedure gives rise to a new chain that takes advantage of the convergence properties of the two underlying processes. In addition to showing that this chain always targets the original target measure, we also establish ergodicity properties under weak assumptions on the Markov kernels involved.The second part of this thesis focuses on discretizations of the underdamped Langevin diffusion. As this diffusion cannot be computed explicitly in general, it is classical to consider discretizations. This thesis establishes for a large class of discretizations a condition of uniform minimization in the time step. With additional assumptions on the potential, it shows that these discretizations converge geometrically to their unique V-invariant probability measure.The last part studies the unadjusted Langevin algorithm in the case where the gradient of the potential is known to within a uniformly bounded error. This part provides bounds in V-norm and in Wasserstein distance between the iterations of the algorithm with the exact gradient and the one with the approximated gradient. To do this, an auxiliary Markov chain is introduced that bounds the difference. It is established that this auxiliary chain converges in distribution to sticky process already studied in the literature for the continuous version of this problem