Letteratura scientifica selezionata sul tema "Vortex compressor"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Vortex compressor".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Vortex compressor"
Hong, Shuli, Guoping Huang, Yuxuan Yang e Zepeng Liu. "Introduction of DMD Method to Study the Dynamic Structures of a Three-Dimensional Centrifugal Compressor with and without Flow Control". Energies 11, n. 11 (9 novembre 2018): 3098. http://dx.doi.org/10.3390/en11113098.
Testo completoJiang, Bin, Xiangtong Shi, Qun Zheng, Qingfang Zhu, Zhongliang Chen e Zhitao Tian. "The Relationship of Spike Stall and Hub Corner Separation in Axial Compressor". International Journal of Turbo & Jet-Engines 37, n. 1 (26 marzo 2020): 1–16. http://dx.doi.org/10.1515/tjj-2016-0046.
Testo completoSchrapp, H., U. Stark e H. Saathoff. "Unsteady behaviour of the tip clearance vortex in a rotor equivalent compressor cascade". Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 223, n. 6 (6 luglio 2009): 635–43. http://dx.doi.org/10.1243/09576509jpe816.
Testo completoWu, T. T., e W. H. Hsieh. "Compression Processes and Performance Analysis of a High-Pressure Reciprocating Gas Compressor". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 210, n. 2 (marzo 1996): 153–65. http://dx.doi.org/10.1243/pime_proc_1996_210_182_02.
Testo completoMao, Xiaochen, Bo Liu e Tianquan Tang. "Effect of casing aspiration on the tip leakage flow in the axial flow compressor cascade". Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 232, n. 3 (3 agosto 2017): 225–39. http://dx.doi.org/10.1177/0957650917724598.
Testo completoKhalid, S. A. "Factors Affecting Measured Axial Compressor Tip Clearance Vortex Circulation". Journal of Turbomachinery 117, n. 3 (1 luglio 1995): 487–90. http://dx.doi.org/10.1115/1.2835685.
Testo completoMailach, R., I. Lehmann e K. Vogeler. "Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex". Journal of Turbomachinery 123, n. 3 (1 febbraio 2000): 453–60. http://dx.doi.org/10.1115/1.1370160.
Testo completoHah, C., e J. Loellbach. "Development of Hub Corner Stall and Its Influence on the Performance of Axial Compressor Blade Rows". Journal of Turbomachinery 121, n. 1 (1 gennaio 1999): 67–77. http://dx.doi.org/10.1115/1.2841235.
Testo completoZhang, Mingming, e Anping Hou. "Numerical Investigation on Unsteady Separation Flow Control in an Axial Compressor Using Detached-Eddy Simulation". Applied Sciences 9, n. 16 (12 agosto 2019): 3298. http://dx.doi.org/10.3390/app9163298.
Testo completoRattanongphisat, Waraporn. "Efficiency of Vortex Tube Enclosure Cooling". Applied Mechanics and Materials 666 (ottobre 2014): 154–58. http://dx.doi.org/10.4028/www.scientific.net/amm.666.154.
Testo completoTesi sul tema "Vortex compressor"
Lim, Choon Peng. "Experimental investigation of vortex shedding in high Reynolds number flow over compressor blades in cascade". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03Mar%5FLim.pdf.
Testo completoThesis advisor(s): Garth V. Hobson, Raymond P. Shreeve. Includes bibliographical references (p. 81-82). Also available online.
Intaratep, Nanyaporn. "Formation and Development of the Tip Leakage Vortex in a Simulated Axial Compressor with Unsteady Inflow". Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/26771.
Testo completoPh. D.
Baiense, Jr Joao C. "Vortex Generator Jet Flow Control in Highly Loaded Compressors". Digital WPI, 2014. https://digitalcommons.wpi.edu/etd-theses/916.
Testo completoLenglin, Geoffroy (Geoffroy Philippe) 1976. "Characterization of wake- and tip-vortex-induced unsteady blade response in multistage compressor environment". Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/82227.
Testo completoZnidarčić, Matej. "Computational Validation of the Compressor Design Program Blade Layout Method". Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1323361068.
Testo completoСеменов, Ф. Д. "Розроблення вихрового компресора для системи газодинамічних ущільнень і дослідження впливу параметрів на його ефективність". Master's thesis, Сумський державний університет, 2020. https://essuir.sumdu.edu.ua/handle/123456789/82264.
Testo completoВ работе выполнен расчет одноступенчатого и двухступенчатого вихревого компрессора. Выполнен сравнительный анализ расчетов для разницы диаметров колес (D = 250/255/318/391) компрессоров на параметры сжатия Рвх = 0,4 МПа, Рвых = 0,45 МПа, Vе = 0,006 м3 / с, Т0 = 288 К, n = 3500 об / мин, среда - аммиак. В результате определено, что на заданные значения лучшим вариантом является двухступенчатый компрессор с диаметрами колес D2 = 250 мм и D2 = 255 мм.
The calculation of a single-stage and two-stage vortex compressor is performed in this work. A comparative analysis of calculations for the difference in wheel diameters (D = 250/255/318/391) of compressors for compression parameters Pvx = 0.4 MPa, Pvih = 0.45 MPa, Ve = 0.006 m3 / s, T0 = 288 K, n = 3500 rpm, medium - ammonia. As a result, it was determined that the best option for the set values is a two-stage compressor with wheel diameters D2 = 250 mm and D2 = 255 mm.
Brown, Peter J. "Experimental investigation on vortex shedding in flow over second-generation, controlled-diffusion, compressor blades in cascade". Thesis, Monterey, California. Naval Postgraduate School, 2002. http://hdl.handle.net/10945/6092.
Testo completoAn investigation of vortex shedding downstream of a cascade of second-generation, controlled-diffusion, compressor stator blades, at off-design inlet-flow angles of 31, 33 and 35 degrees and Reynolds numbers, based on chord length, of 280,000, 380,000 and 640,000 is reported. The objective of the study was to characterize the flow and shedding through various complementary methods. Blade surface pressure measurements were taken from a fully instrumented blade, and distributions of pressure coefficients were determined. Five-hole probe wake surveys were performed at midspan, and the total pressure loss coefficients and axial velocity ratios were calculated. Upstream inlet-flow angle was set, and further characterized through two-component laser-Doppler velocimetry (LDV). Hot-wire anemometry measurements were performed at mid span, in the wake, and the reduced data were compared with two-component LDV surveys of the same regions. Plots of hot-wire vs. LDV turbulence data are reported in addition to power spectra documenting the shedding events. Vortex shedding was determined to be a leading edge phenomenon as periodic shedding was only detected on the pressure side of the wake. The frequency and magnitude of shedding were found to be independent of incidence angle, and to increase with Reynolds number at constant incidence angle. The Strouhal number, based on leading edge diameter, was found to be in the range of 0.23-0.26, which is comparable to that of vortex shedding behind a circular cylinder in the Reynolds number range tested.
Langford, Matthew David. "Experimental Investigation of the Effects of a Passing Shock on Compressor Stator Flow". Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/32020.
Testo completoMaster of Science
Shin, Sangmook. "Reynolds-Averaged Navier-Stokes Computation of Tip Clearance Flow in a Compressor Cascade Using an Unstructured Grid". Diss., Virginia Tech, 2001. http://hdl.handle.net/10919/28947.
Testo completoPh. D.
Carr, M. I. "The excitation of acoustic resonances in an axial flow compressor stage by vortex shedding from aerofoil section blading". Thesis, Swansea University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.636209.
Testo completoLibri sul tema "Vortex compressor"
Tip Vortex and Crenulation Effects in a Compressor Cascade with Moving Endwall. Storming Media, 1999.
Cerca il testo completoExperimental Investigation of Vortex Shedding in High Reynolds Number Flow Over Compressor Blades in Cascade. Storming Media, 2003.
Cerca il testo completoExperimental Investigation of Vortex Shedding in Flow Over Second- Generation, Controlled-Diffusion, Compressor Blades in Cascade. Storming Media, 2002.
Cerca il testo completoExperimental and computational investigation of the tip clearance flow in a transonic axial compressor rotor. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Cerca il testo completoL, Celestina Mark, e United States. National Aeronautics and Space Administration., a cura di. Experimental and computational investigation of the tip clearance flow in a transonic axial compressor rotor. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Cerca il testo completoCapitoli di libri sul tema "Vortex compressor"
Decher, Reiner. "The Compressor: Gas Turbine Engine Keystone". In The Vortex and The Jet, 109–19. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8028-1_10.
Testo completoDecher, Reiner. "Bypass and Other Engines". In The Vortex and The Jet, 121–24. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8028-1_11.
Testo completoManisankar, C., S. B. Verma e C. Raju. "Shock-Wave Boundary-Layer Interaction Control on a Compression Corner Using Mechanical Vortex Generators". In 28th International Symposium on Shock Waves, 409–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25685-1_62.
Testo completoRenganathan, Manimaran. "Prediction of In-Cylinder Swirl in a Compression Ignition Engine with Vortex Tube Using Artificial and Recurrent Neural Networks". In Artificial Intelligence and Technologies, 53–62. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6448-9_6.
Testo completoAtti di convegni sul tema "Vortex compressor"
Zheng, Tan, Xiaoqing Qiang e Jinfang Teng. "Effects of Vortex-Vortex Interaction in a Compressor Cascade With Vortex Generators". In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-43042.
Testo completoBae, Jinwoo, Kenneth S. Breuer e Choon S. Tan. "Periodic Unsteadiness of Compressor Tip Clearance Vortex". In ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-53015.
Testo completoCao, Zhiyuan, Cheng Song, Xi Gao e Xiang Zhang. "Effect of Pulsed Endwall Injection on Flow Separation and Vortex Structure of a Compressor Cascade". In GPPS Xi'an21. GPPS, 2022. http://dx.doi.org/10.33737/gpps21-tc-46.
Testo completoBallmann, J., e W. Hofmann. "Tip clearance vortex development and shock-vortex-interaction in a transonic axial compressor rotor". In 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-83.
Testo completoTang, Yan-Ping, e Mao-Zhang Chen. "Vortex Control Over End Wall Flow in Compressor Cascades". In ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/90-gt-228.
Testo completoHah, Chunill, Jo¨rg Bergner e Heinz-Peter Schiffer. "Tip Clearance Vortex Oscillation, Vortex Shedding and Rotating Instabilities in an Axial Transonic Compressor Rotor". In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50105.
Testo completoTomita, Isao, Seiichi Ibaraki, Masato Furukawa e Kazutoyo Yamada. "The Effect of Tip Leakage Vortex for Operating Range Enhancement of Centrifugal Compressor". In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68947.
Testo completoHergt, Alexander, Robert Meyer e Karl Engel. "Effects of Vortex Generator Application on the Performance of a Compressor Cascade". In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-22464.
Testo completoAgarwal, Ruchika, Sridharan R. Narayanan, Shraman N. Goswami e Balamurugan Srinivasan. "Numerical Analysis on Axial Compressor Stage Performance With Vortex Generators". In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-43897.
Testo completoLi, Xiaosa, Zegang Qian e Qichao Yang. "Research of Whirlpool Sound Radiation in Turbulence Coherent Structures". In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62890.
Testo completoRapporti di organizzazioni sul tema "Vortex compressor"
Hershcovitch, Ady. Vortex stabilized electron beam compressed fusion grade plasma. Office of Scientific and Technical Information (OSTI), marzo 2014. http://dx.doi.org/10.2172/1127069.
Testo completo