Letteratura scientifica selezionata sul tema "Wang lu ying yong"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Wang lu ying yong".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Wang lu ying yong"

1

Lu, D. Y., T. R. Lu e B. Xu. "RETRACTED: Aberrant Sialylation in Cancer Pathology and Metastasis, a Putative Drug Target Candidate". Anti-Cancer Agents in Medicinal Chemistry 18, n. 14 (15 febbraio 2019): 1952–61. http://dx.doi.org/10.2174/1871520618666180911113141.

Testo completo
Abstract (sommario):
The article entitled “Aberrant Sialylation in Cancer Pathology and Metastasis, a Putative Drug Target Candidate”, by Lu D.Y., Lu T.R., Xu B., Varki A., Huang M., Zhu H., Shen Y., Yarla N.S., has been retracted on the request of the co-authors Dr. Ajit Varki, Ming Huang, Hong Zhu and Ying Shen available at: Anticancer Agents Med Chem. 2018; 18(14): 1952-1961. http://www.eurekaselect.com/165282. <P> The Corresponding Author Dr. Da-Yong Lu has included the name of the co-author Dr. Ajit Varki, Dr. Nagendra Yarla, Ming Huang, Hong Zhu and Ying Shen without their consent and the manuscript has been published in the journal Anti-Cancer Agents in Medicinal Chemistry (ACAMC). Kindly see Bentham Science Policy on Article retraction at the link given below: <P> https://benthamscience.com/journals/anti-cancer-agents-in-medicinal-chemistry/editorial-policies/). <P> Submission of a manuscript to the respective journals implies that all authors have read and agreed to the content of the Copyright Letter or the Terms and Conditions. As such this article represents a severe abuse of the scientific publishing system. Bentham Science Publishers takes a very strong view on this matter and apologizes to the readers of the journal for any inconvenience this may cause.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Lu, Da-Yong, Peng-Peng Zhu, Hong-Ying Wu, Bin Xu, Jian Ding e Ting-Ren Lu. "RETRACTED: Human Suicide, Modern Diagnosis Assistance and Magic Bullet Discovery". Central Nervous System Agents in Medicinal Chemistry 19, n. 1 (18 marzo 2019): 15–23. http://dx.doi.org/10.2174/1871524919666190115130655.

Testo completo
Abstract (sommario):
The article entitled “Human Suicide, Modern Diagnosis Assistance and Magic Bullet Discovery”, by Da-Yong Lu, Peng-Peng Zhu, Hong-Ying Wu, Nagendra Sastry Yarla, Bin Xu, Jian Ding, Ajit Varki and Ting-Ren Lu, has been retracted on the request of one co-authors, Dr. Ajit Varki and Dr. Nagendra Sastry Yarla available at: Cent Nerv Syst Agents Med Chem 2019; 19(1): 15-23. http://www.eurekaselect.com/169003/article. The Corresponding Author Dr. Da-Yong Lu has included the names of the co-authors, Dr. Ajit Varki and Dr. Nagendra Sastry Yarla without their consent and the manuscript has been published in the journal, Central Nervous System Agents in Medicinal Chemistry (CNSAMC). Kindly see Bentham Science Policy on Article retraction at the link given below: (https://benthamscience.com/journals/central-nervous-system-agents-in-medicinal-chemistry/author-guidelines/) Submission of a manuscript to the respective journals implies that all authors have read and agreed to the content of the Copyright Letter or the Terms and Conditions. As such, this article represents a severe abuse of the scientific publishing sys-tem. Bentham Science Publishers takes a very strong view on this matter and apologizes to the readers of the journal for any inconvenience this may cause.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

WUXIUCHENG. "A Discussion on the Authenticity of Removal Notice of Ying Wang from the Position of Military Governor Written by Emperor Xuanzong of Tang—— concurrently discuss the true facts of so called yong king Li Lin’s Case". Journal of Study on Language and Culture of Korea and China ll, n. 33 (ottobre 2013): 639–55. http://dx.doi.org/10.16874/jslckc.2013..33.026.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

ZIEGLER, THOMAS, CUONG THE PHAM, TAN VAN NGUYEN, TRUONG QUANG NGUYEN, JIAN WANG, YING-YONG WANG, BRYAN L. STUART e MINH DUC LE. "Erratum: THOMAS ZIEGLER, CUONG THE PHAM, TAN VAN NGUYEN, TRUONG QUANG NGUYEN, JIAN WANG, YING-YONG WANG, BRYAN L. STUART & MINH DUC LE (2019) A new species of Opisthotropis from northern Vietnam previously misidentified as the Yellow-spotted Mountain Stream Keelback O. maculosa Stuart & Chuaynkern, 2007 (Squamata: Natricidae). Zootaxa, 4613, 579–586." Zootaxa 4903, n. 4 (11 gennaio 2021): 598. http://dx.doi.org/10.11646/zootaxa.4903.4.8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

ZIEGLER, THOMAS, CUONG THE PHAM, TAN VAN NGUYEN, TRUONG QUANG NGUYEN, JIAN WANG, YING-YONG WANG, BRYAN L. STUART e MINH DUC LE. "Erratum: THOMAS ZIEGLER, CUONG THE PHAM, TAN VAN NGUYEN, TRUONG QUANG NGUYEN, JIAN WANG, YING-YONG WANG, BRYAN L. STUART & MINH DUC LE (2019) A new species of Opisthotropis from northern Vietnam previously misidentified as the Yellow-spotted Mountain Stream Keelback O. maculosa Stuart & Chuaynkern, 2007 (Squamata: Natricidae). Zootaxa, 4613, 579–586." Zootaxa 4903, n. 4 (11 gennaio 2021): 598. http://dx.doi.org/10.11646/zootaxa.4903.4.8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Алиев, Озбек Мисирхан, Сабина Телман Байрамова, Дильбар Самед Аждарова, Валида Мурад Рагимова e Шарафат Гаджиага Мамедов. "Синтез и свойства синтетического айкинита PbCuBiS3". Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, n. 2 (25 giugno 2020): 182–89. http://dx.doi.org/10.17308/kcmf.2020.22/2821.

Testo completo
Abstract (sommario):
Целью данной работы является синтез и исследование свойств синтетического айкинита, PbCuBiS3.Синтез проводили в откачанных кварцевых ампулах в течение 7–8 ч, максимальная температура составляла 1250–1325 К. Далее образцы охлаждали и выдерживали при 600 К в течение недели. Потом ампулы вскрывали, образцы тщательно перетирали и после плавки отжигали при 600–800 К в зависимости от состава не менее двух недель для приведения образцов в равновесное состояние. Отожженные образцы исследовали методами дифференциально-термического (ДТА), рентгенофазового (РФА), микроструктурного (МСА) анализов, а также измерением микротвердости и определением плотности. РФА проводили на рентгеновском приборе модели Д 2 PHASER с использованием CuKa- излучении Ni-фильтр.Комплексом методов физико-химического анализа изучены разрезы CuBiS2–PbS, Cu2S–PbCuBiS3, Bi2S3–PbCuBiS3, PbBi2S4–PbCuBiS3, PbBi4S7–PbCuBiS3 квазитройной системы Cu2S–Bi2S3–PbS и построены их фазовые диаграммы.Установлено, что кроме сечения PbBi2S4–PbCuBiS3 все разрезы квазибинарные и характеризуются наличием ограниченных областей растворимости на основе исходных компонентов.При изучении разреза CuBiS2–PbS установлено образование четверного соединения состава PbCuBiS3, встречающееся в природе в виде минерала айкинита, плавящегося конгруэнтно при 980 К. Установлено, что соединение PbCuBiS3 кристаллизуется в ромбической сингонии с параметрами решетки: а = 1.1632, b = 1.166, с = 0.401 нм, прост. группа Pnma, Z = 4. Методами ДТА и РФА установлено, что соединение PbCuBiS3 является фазой переменного состава с областью гомогенности от 45 до 52 мол. % PbS. Соединение PbCuBiS3 является дырочным полупроводником с шириной запрещенной зоны ΔЕ = 0.84 эВ. ЛИТЕРАТУРА 1. Zhang Y-X., Ge Z-H., Feng J. Enhanced thermoelectric properties of Cu1.8S via introducing Bi2S3 andBi2S3/Bi core-shell nanorods. Journal of Alloys and Compounds. 2017;727: 1076–1082. DOI: https://doi.org/10.1016/j.jallcom.2017.08.2242. Mahuli N., Saha D., Sarkar S. K. Atomic layer deposition of p-type Bi2S3. Journal of Physical ChemistryC. 2017;121(14): 8136–8144. DOI: https://doi.org/10.1021/acs.jpcc.6b126293. Ge Z-H, Qin P., He D, Chong X., Feng D., Ji Y-H., Feng J., He J. Highly enhanced thermoelectric propertiesof Bi/Bi2S3 nano composites. ACS Applied Materials & Interfaces. 2017;9(5): 4828–4834. DOI: https://doi.org/10.1021/acsami.6b148034. Savory C. N., Ganose A. M., Scanlon D. O. Exploring the PbS–Bi2S3 series for next generation energyconversion materials. Chemistry of Materials. 2017;29(12): 5156–5167. DOI: https://doi.org/10.1021/acs.chemmater.7b006285. Li X., Wu Y, Ying H., Xu M., Jin C., He Z., Zhang Q., Su W., Zhao S. In situ physical examination of Bi2S3 nanowires with a microscope. Journal of Alloys and Compounds. 2019;798: 628–634. DOI: https://doi.org/10.1016/j.jallcom.2019.05.3196. Patila S. A., Hwanga Y-T., Jadhavc V. V., Kimc K. H., Kim H-S. Solution processed growth andphotoelectrochemistry of Bi2S3 nanorods thin fi lm. Journal of Photochemistry & Photobiology, A: Chemistry.2017;332: 174–181. DOI: https://doi.org/10.1016/j.jphotochem.2016.07.0377. Yang M., Luo Y. Z., Zeng M. G., Shen L., Lu Y. H., Zhou J., Wang S. J., Souf I. K., Feng Y. P. Pressure inducedtopological phase transition in layered Bi2S3. Physical Chemistry Chemical Physics. 2017;19(43):29372–29380. DOI: https://doi.org/10.1039/C7CP04583B8. Kоhatsu I., Wuensch B. J. The crystal structure of aikinite, PbCuBiS3. Acta Crystallogr. 1971;27(6):1245–1252. DOI: https://doi.org/10.1107/s05677408710038199. Ohmasa M., Nowacki W. A redetermination on the crystal structure of aikinite (BiS2/S/S/CuIVPbVII).Z. Krystallogr. 1970;132(1-6): 71-86. DOI: https://doi.org/10.1524/zkri.1970.132.1-6.7110. Strobel S., Sohleid T. Three structures for strontium copper (I) lanthanidis (III) selinidesSrCuMeSe3 (M = La, Gd, Lu). J. Alloys and Compounds. 2006;418(1–2): 80–85. DOI: https://doi.org/10.1016/j.jallcom.2005.09.09011. Сикерина Н. В., Андреев О. В. Кристаллическая структура соединений SrLnCuS3(Ln = Gd, Lu).Журн. неорган. химии. 2007;52(4): 641–644. Режим доступа: https://www.elibrary.ru/item.asp?id=959411112. Edenharter A., Nowacki W., Takeuchi Y. Verfeinerung der kristallstructur von Bournonit [(SbS3)1/CuPbPb2IV VIIVIII] und von seligmannit [(AsS3)2/CuPbPb2IVVIIVIII]. Z. Kristallogr. 1970;131(1): 397–417.DOI: https://doi.org/10.1524/zkri.1970.131.1-6.39713. Каплунник Л. Н. Кристаллические структуры минералов великита, акташита, швацита, теннантита, галхаита, линдстремита-крупкаита и синтетической Pb, Sn сульфосоли. Автореф. дисс. … канд.геол.-минер. наук. М.: Изд-во Моск. ун-та; 1978. 25 с.Режим доступа: https://search.rsl.ru/ru/record/0100780541514. Гасымов В. А., Мамедов Х. С. О кристаллохимии промежуточных фаз системы висмутинайкинит (Bi2 S3–CuPbBiS3). Азерб. хим. журн.1976;(1): 121–125. Режим доступа: https://cyberleninka.ru/article/n/fazovye-ravnovesiya-v-sisteme-pbla2s4-pbbi2s415. Christuk A. E., Wu P., Ibers J. A. New quaternary chalcogenides BaLnMQ3 (Ln – Rare Earth; M = Cu, Ag;Q = S, Se). J. Solid State Chem. 1994;110(2): 330–336. DOI: https://doi.org/10.1006/jssc.1994.117616. Wu P., Ibers J. A. Synthesis of the new quaternary sulfi des K2Y4Sn2S11 and BaLnAgS3 (Ln = Er, Y, Gd)and the Structures of K2Y4Sn2S11 and BaErAgS3. J. Solid State Chem. 1994;110(1): 156–161. DOI: https://doi.org/10.1006/jssc.1994.115017. Победимская Е. А., Каплунник Л. Н., Петрова И. В. Кристаллохимия сульфидов. Итоги наукии техники. Серия кристаллохимия. М.: Изд-во АН СССР. 1983; 17: 164 с.18. Gulay L. D., Shemet V. Ya., Olekseyuk I. D. Investigation of the R2S3–Cu2S–PbS (R = Y, Dy, Ho andEr) systems. J. Alloys and Compounds. 2007;43(1–2): 77–84. DOI: https://doi.org/10.1016/j.jallcom.2006.05.02919. Костов И., Миначева-Стефанова И. Сульфидные минералы. М.: Мир; 1984. 281с. 20. Алиева Р. А., Байрмаова С. Т., Алиев О. М. Диаграмма состояния систем CuSbS2–PbS (M = Pb,Eu, Yb). Неорган. материалы. 2010;46(7): 703–706. DOI: https://doi.org/10.1134/s002016851007002221. Байрамова С. Т., Багиева М. Р., Алиев О. М., Рагимова В. М. Синтез и свойства структурныханалогов минерала бурнонита. Неорган. материалы. 2011;47(4): 345–348. DOI: https://doi.org/10.1134/S002016851104005422. Байрамова С. Т., Багиева М. Р., Алиев О. М. Взаимодействие в системах CuAsS2–PbS. Неорган.материалы. 2011;47(3): 231–234. DOI: https://doi.org/10.1134/S002016851103004623. Aliev O. M., Ajdarova D. S., Bayramova S. T., Ragimova V. M. Nonstoichiometry in PbCuSbS3. Azerb.chem. journal. 2016;(2): 51–54. Режим доступа: https://cyberleninka.ru/article/n/nonstoichiometryin-pbcusbs3-compound24. Aliev O. M., Ajdarova D. S., Agayeva R. M., Ragimova V. M. Phaseformation in quasiternary systemCu2S–PbS–Sb2S3. Intern Journal of Application and Fundamental Research. 2016;(12): 1482–1488. Режимдоступа: https://applied-research.ru/pdf/2016/2016_12_8.pdf25. Алиев О. М., Аждарова Д. С., Агаева Р. М., Максудова Т. Ф. Фазообразование на разрезахCu2S(Sb2S3, PbSb2S4, Pb5Sb4S11)–PbCuSbS3 квазитройной системы Cu2S–Sb2S3–PbS и физические свой-ства твердых растворов (Sb2S3)1–x(PbCuSbS3)x. Неорган. материалы. 2018;54(12): 1275–1280. DOI: https://doi.org/10.1134/S002016851812001426. Рзагулуев В. А., Керимли О. Ш., Аждарова Д. С., Мамедов Ш. Г., Алиев О. М. Фазовые равновесия в системах Ag8SnS6–Cu2SnS3 и Ag2SnS3–Cu2Sn4S9. Конденсированные среды и межфазныеграницы. 2019; 21(4): 544–551. DOI: https://doi.org/10.17308/kcmf.2019.21/2365
Gli stili APA, Harvard, Vancouver, ISO e altri
7

"Correction: Jieli Chen, Zheng Gang Zhang, Yi Li, Ying Wang, Lei Wang, Hao Jiang, Chenling Zhang, Mei Lu, Mark Katakowski, Carolyn S. Feldkamp, Michael Chopp. Statins induce angiogenesis, neurogenesis, and synaptogenesis after stroke. Ann Neurol 2003; 53: 743-751." Annals of Neurology 58, n. 5 (2005): 818. http://dx.doi.org/10.1002/ana.20711.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

"Retraction: Tanshinone IIA prevents left ventricular remodelling via the TLR4/MyD88/NF‐κB signalling pathway in rats with myocardial infarction. Dong‐Mei Wu, Yong‐Jian Wang, Xin‐Rui Han, Xin Wen, Lei Li, Lan Xu, Jun Lu and Yuan‐Lin Zheng. J Cell Mol Med. 2018; 22: 3058–3072 (https://doi.org/10.1111/jcmm.13557)." Journal of Cellular and Molecular Medicine, 4 gennaio 2021. http://dx.doi.org/10.1111/jcmm.16032.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Thinh, Nguyen Hong, Tran Hoang Tung e Le Vu Ha. "Depth-aware salient object segmentation". VNU Journal of Science: Computer Science and Communication Engineering 36, n. 2 (7 ottobre 2020). http://dx.doi.org/10.25073/2588-1086/vnucsce.217.

Testo completo
Abstract (sommario):
Object segmentation is an important task which is widely employed in many computer vision applications such as object detection, tracking, recognition, and retrieval. It can be seen as a two-phase process: object detection and segmentation. Object segmentation becomes more challenging in case there is no prior knowledge about the object in the scene. In such conditions, visual attention analysis via saliency mapping may offer a mean to predict the object location by using visual contrast, local or global, to identify regions that draw strong attention in the image. However, in such situations as clutter background, highly varied object surface, or shadow, regular and salient object segmentation approaches based on a single image feature such as color or brightness have shown to be insufficient for the task. This work proposes a new salient object segmentation method which uses a depth map obtained from the input image for enhancing the accuracy of saliency mapping. A deep learning-based method is employed for depth map estimation. Our experiments showed that the proposed method outperforms other state-of-the-art object segmentation algorithms in terms of recall and precision. KeywordsSaliency map, Depth map, deep learning, object segmentation References[1] Itti, C. Koch, E. Niebur, A model of saliency-based visual attention for rapid scene analysis, IEEE Transactions on pattern analysis and machine intelligence 20(11) (1998) 1254-1259.[2] Goferman, L. Zelnik-Manor, A. Tal, Context-aware saliency detection, IEEE transactions on pattern analysis and machine intelligence 34(10) (2012) 1915-1926.[3] Kanan, M.H. Tong, L. Zhang, G.W. Cottrell, Sun: Top-down saliency using natural statistics, Visual cognition 17(6-7) (2009) 979-1003.[4] Liu, Z. Yuan, J. Sun, J. Wang, N. Zheng, X. Tang, H.-Y. Shum, Learning to detect a salient object, IEEE Transactions on Pattern analysis and machine intelligence 33(2) (2011) 353-367.[5] Perazzi, P. Krähenbühl, Y. Pritch, A. Hornung, Saliency filters: Contrast based filtering for salient region detection, in: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, IEEE, 2012, pp. 733-740.[6] M. Cheng, N.J. Mitra, X. Huang, P.H. Torr, S.M. Hu, Global contrast based salient region detection, IEEE Transactions on Pattern Analysis and Machine Intelligence 37(3) (2015) 569-582.[7] Borji, L. Itti, State-of-the-art in visual attention modeling, IEEE transactions on pattern analysis and machine intelligence 35(1) (2013) 185-207.[8] Simonyan, A. Vedaldi, A. Zisserman, Deep inside convolutional networks: Visualising image classification models and saliency maps, arXiv preprint arXiv:1312.6034.[9] Li, Y. Yu, Visual saliency based on multiscale deep features, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 5455-5463.[10] Liu, J. Han, Dhsnet: Deep hierarchical saliency network for salient object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 678-686.[11] Achanta, S. Hemami, F. Estrada, S. Susstrunk, Frequency-tuned saliency detection model, CVPR: Proc IEEE, 2009, pp. 1597-604.Fu, J. Cheng, Z. Li, H. Lu, Saliency cuts: An automatic approach to object segmentation, in: Pattern Recognition, 2008. ICPR 2008. 19th International Conference on, IEEE, 2008, pp. 1-4Borenstein, J. Malik, Shape guided object segmentation, in: Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, Vol. 1, IEEE, 2006, pp. 969-976.Jiang, J. Wang, Z. Yuan, T. Liu, N. Zheng, S. Li, Automatic salient object segmentation based on context and shape prior., in: BMVC. 6 (2011) 9.Ciptadi, T. Hermans, J.M. Rehg, An in depth view of saliency, Georgia Institute of Technology, 2013.Desingh, K.M. Krishna, D. Rajan, C. Jawahar, Depth really matters: Improving visual salient region detection with depth., in: BMVC, 2013.Li, J. Ye, Y. Ji, H. Ling, J. Yu, Saliency detection on light field, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 2806-2813.Koch, S. Ullman, Shifts in selective visual attention: towards the underlying neural circuitry, in: Matters of intelligence, Springer, 1987, pp. 115-141.Laina, C. Rupprecht, V. Belagiannis, F. Tombari, N. Navab, Deeper depth prediction with fully convolutional residual networks, in: 3D Vision (3DV), 2016 Fourth International Conference on, IEEE, 2016, pp. 239-248.Bruce, J. Tsotsos, Saliency based on information maximization, in: Advances in neural information processing systems, 2006, pp. 155-162.Ren, X. Gong, L. Yu, W. Zhou, M. Ying Yang, Exploiting global priors for rgb-d saliency detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2015, pp. 25-32.Fang, J. Wang, M. Narwaria, P. Le Callet, W. Lin, Saliency detection for stereoscopic images., IEEE Trans. Image Processing 23(6) (2014) 2625-2636.Hou, L. Zhang, Saliency detection: A spectral residual approach, in: Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, IEEE, 2007, pp. 1-8.Guo, Q. Ma, L. Zhang, Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform, in: Computer vision and pattern recognition, 2008. cvpr 2008. ieee conference on, IEEE, 2008, pp. 1-8.Fang, W. Lin, B.S. Lee, C.T. Lau, Z. Chen, C.W. Lin, Bottom-up saliency detection model based on human visual sensitivity and amplitude spectrum, IEEE Transactions on Multimedia 14(1) (2012) 187-198.Lang, T.V. Nguyen, H. Katti, K. Yadati, M. Kankanhalli, S. Yan, Depth matters: Influence of depth cues on visual saliency, in: Computer vision-ECCV 2012, Springer, 2012, pp. 101-115.Zhang, G. Jiang, M. Yu, K. Chen, Stereoscopic visual attention model for 3d video, in: International Conference on Multimedia Modeling, Springer, 2010, pp. 314-324.Wang, M.P. Da Silva, P. Le Callet, V. Ricordel, Computational model of stereoscopic 3d visual saliency, IEEE Transactions on Image Processing 22(6) (2013) 2151-2165.Peng, B. Li, W. Xiong, W. Hu, R. Ji, Rgbd salient object detection: A benchmark and algorithms, in: European Conference on Computer Vision (ECCV), 2014, pp. 92-109.Wu, L. Duan, L. Kong, Rgb-d salient object detection via feature fusion and multi-scale enhancement, in: CCF Chinese Conference on Computer Vision, Springer, 2015, pp. 359-368.Xue, Y. Gu, Y. Li, J. Yang, Rgb-d saliency detection via mutual guided manifold ranking, in: Image Processing (ICIP), 2015 IEEE International Conference on, IEEE, 2015, pp. 666-670.Katz, A. Adler, Depth camera based on structured light and stereo vision, uS Patent App. 12/877,595 (Mar. 8 2012).Chatterjee, G. Molina, D. Lelescu, Systems and methods for determining depth from multiple views of a scene that include aliasing using hypothesized fusion, uS Patent App. 13/623,091 (Mar. 21 2013).Matthies, T. Kanade, R. Szeliski, Kalman filter-based algorithms for estimating depth from image sequences, International Journal of Computer Vision 3(3) (1989) 209-238.Y. Schechner, N. Kiryati, Depth from defocus vs. stereo: How different really are they?, International Journal of Computer Vision 39(2) (2000) 141-162.Delage, H. Lee, A.Y. Ng, A dynamic bayesian network model for autonomous 3d reconstruction from a single indoor image, in: Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, Vol. 2, IEEE, 2006, pp. 2418-2428.Saxena, M. Sun, A.Y. Ng, Make3d: Learning 3d scene structure from a single still image, IEEE transactions on pattern analysis and machine intelligence 31(5) (2009) 824-840.Hedau, D. Hoiem, D. Forsyth, Recovering the spatial layout of cluttered rooms, in: Computer vision, 2009 IEEE 12th international conference on, IEEE, 2009, pp. 1849-1856.Liu, S. Gould, D. Koller, Single image depth estimation from predicted semantic labels, in: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, IEEE, 2010, pp. 1253-1260.Ladicky, J. Shi, M. Pollefeys, Pulling things out of perspective, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 89-96.K. Nathan Silberman, Derek Hoiem, R. Fergus, Indoor segmentation and support inference from rgbd images, in: ECCV, 2012.Liu, J. Yuen, A. Torralba, Sift flow: Dense correspondence across scenes and its applications, IEEE transactions on pattern analysis and machine intelligence 33(5) (2011) 978-994.Konrad, M. Wang, P. Ishwar, 2d-to-3d image conversion by learning depth from examples, in: Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on, IEEE, 2012, pp. 16-22.Liu, C. Shen, G. Lin, Deep convolutional neural fields for depth estimation from a single image, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 5162-5170.Wang, X. Shen, Z. Lin, S. Cohen, B. Price, A.L. Yuille, Towards unified depth and semantic prediction from a single image, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 2800-2809.Geiger, P. Lenz, C. Stiller, R. Urtasun, Vision meets robotics: The kitti dataset, International Journal of Robotics Research (IJRR).Achanta, S. Süsstrunk, Saliency detection using maximum symmetric surround, in: Image processing (ICIP), 2010 17th IEEE international conference on, IEEE, 2010, pp. 2653-2656.E. Rahtu, J. Kannala, M. Salo, J. Heikkilä, Segmenting salient objects from images and videos, in: Computer Vision-ECCV 2010, Springer, 2010, pp. 366-37.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Tra, Ngo Thanh, Le Quang Minh, Cai Phuc Thien Khoa e Ngo Phu Thanh. "Incorporating Risk into Technical Efficiency: The Case of ASEAN Banks". VNU Journal of Science: Economics and Business, 19 giugno 2018. http://dx.doi.org/10.25073/2588-1108/vnueab.4132.

Testo completo
Abstract (sommario):
The objective of this paper is to incorporate risk in technical efficiency of listed ASEAN banks in a panel data framework for the period 2000 to 2015. Many researchers apply frontier estimation techniques such as data envelopment analysis (DEA) or stochastic frontier analysis (SFA) for their efficiency analysis. However, the banks’ complex production process requires more sophisticated techniques to account for internal structures within the black box so relying only traditional DEA or SFA is not adequate to deal with a multiple-input and multiple-output production technology. To incorporate undesirable outputs such as risk into inefficiency, we rely on the directional distance function (DDF). We employ the DDF under both parametric (SFA) and semi-parametric (SEMSFA) framework to make a comparison efficiency scores with risk adjusted in two scenarios. Our results suggest that risk is an important factor that bank managers should pay more focus to achieve long-term efficiency in ASEAN banks Keywords Bank efficiency; risk; directional distance function (DDF); semiparametric estimation of stochastic frontier models (SEMSFA) References ADB. (2013). The road to ASEAN financial integration: A combined study on assessing the financial landscape and formulating milestones for monetary and financial integration in ASEAN. Andor, M., & Hesse, F. (2014). The StoNED age: the departure into a new era of efficiency analysis? A monte carlo comparison of StoNED and the ‘‘oldies’’ (SFA and DEA). J Prod Anal 41, 85-109. doi: 10.1007/s11123-013-0354-yBerger, A. N., & DeYoung, R. (1997). Problem loans and cost efficiency in commercial banks. Journal of Banking & Finance, 21(6), 849-870. Berger, A. N., & Humphrey, D. B. (1997). Efficiency of financial institutions: international survey and directions for future research. European Journal of Operational Research, 98, 175-212. Chan, S.-G., Koh, E. H. Y., Zainir, F., & Yong, C.-C. (2015). Market structure, institutional framework and bank efficiency in ASEAN 5. Journal of Economics and Business, 82, 84-112. Chang, C.-C. (1999). The Nonparametric Risk-Adjusted Efficiency Measurement: An Application to Taiwan’s Major Rural Financial Intermediaries. American Journal of Agricultural Economics, 81(4), 902-913. Chang, T.-C., & Chiu, Y. H. (2006). Affecting factors on risk-adjusted effciency in Taiwan’s banking industry. Contemporary Economic Policy 24(4), 634-648. Gardener, E., Molyneux, P., & Nguyen-Linh, H. (2011). Determinants of efficiency in South East Asian banking. The Service Industries Journal, 31(16), 2693-2719. Huang, T.-H., Chiang, D.-L., & Tsai, C.-M. (2015). Applying the New Metafrontier Directional Distance Function to Compare Banking Efficiencies in Central and Eastern European Countries. Economic Modelling, 44, 188-199. Karim, M. Z. A. (2001). Comparative Bank Efficiency across Select ASEAN Countries. ASEAN Economic Bulletin, 18(3), 289-304. Karim, M. Z. A., Sok-Gee, C., & Sallahudin, H. (2010). Bank efficiency and non-performing loans: Evidence from Malaysia and Singapore. Prague Economic Papers, 2, 118-132. doi: 10.18267/j.pep.367Khan, S. J. M. (2014). Bank Efficiency in Southeast Asian Countries: The Impact of Environmental Variables. In Handbook on the Emerging Trends in Scientific Research. Malaysia: PAK Publishing Group. Laeven, L. (1999). Risk and Efficiency in East Asian Banks (Vol. 2255). Washington, D.C. : World Bank, Financial Sector Strategy and Policy Department.Manlagnit, M. C. V. (2011). Cost efficiency, determinants, and risk preferences in banking: A case of stochastic frontier analysis in the Philippines. Journal of Asian Economics, 22, 23-35. Sarifuddin, S., Ismail, M. K., & Kumaran, V. V. (2015). Comparison of Banking Efficiency in the selected ASEAN Countries during the Global Financial Crisis. PROSIDING PERKEM, 10, 286-293. Sarmientoa, M., & Galán, J. E. (2015). The Influence of Risk-Taking on Bank Efficiency: Evidence from Colombia. CentER Discussion Paper, 2015-036. Vidoli, F., & Ferrara, G. (2015). Analyzing Italian citrus sector by semi-nonparametric frontier efficiency models. Empir Econ, 45, 641-658. Williams, J., & Nguyen, N. (2005). Financial Liberalisation, Crisis, and Restructuring: A Comparative Study of Bank Performance and Bank Governance in South East Asia. Journal of Banking and Finance, 29(8-9), 2119-2154. Wong, W. P., & Deng, Q. (1999). Efficiency analysis of banks in ASEAN countries. Benchmarking: An International Journal, 23(7), 1798-1817. Yueh-Cheng Wu, I. W. K. T., Wen-Min Lu, Mohammad Nourani, Qian Long Kweh. (2016). The impact of earnings management on the performance of ASEAN banks. Economic Modelling, 53, 156-165. Zhu, N., Wang, B., Yu, Z., & Wu, Y. (2016). Technical Efficiency Measurement Incorporating Risk Preferences: An Empirical Analysis of Chinese Commercial Banks. Emerging Markets Finance and Trade, 52, 610-624.
Gli stili APA, Harvard, Vancouver, ISO e altri

Libri sul tema "Wang lu ying yong"

1

Biyao, Shi, Dai Rongxian e Dekesite shi yan shi, a cura di. Xin wang ji wang lu ying yong da quan: Ru men, FrontPage, ASP.NET. Taibei Shi: Zhi cheng shu wei ke ji gu fen you xian gong si, 2006.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Fuling, Liu, e Saunders Rebecca-M, a cura di. Ya ma xun wang lu shu dian de shi da mi jue. Tai bei shi: Lian jing, 1999.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Wang lu yu yun duan ying yong: Google + O365 + Evernote yun duan huo yong jiao xue. Taibei Shi: Qi feng zi xun gu fen you xian gong si, 2016.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Ubuntu 17 wan quan zi xue shou ce: Zhuo mian, xi tong yu wang lu ying yong quan gong lüe. Xinbei Shi: Bo shuo wen hua gu fen you xian gong si, 2017.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Xue zi ran fa yin bu yong bei !: Yi bei zi bu hui wang de ying wen fa yin : chao hao ji ! lu dong xue fa yin. Taibei Xian Zhonghe Shi: Guang xia chu ban ji tuan, 2007.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Wu feng xi wang lu xia zhi zhi hui hua ying yong yu fu wu fa zhan qu shi: Seamless networks : smart application and service development trends. Taibei Shi: Cai tuan fa ren zi xun gong ye ce jin hui zi xun shi chang qing bao zhong xin (MIC), 2008.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

author, Kikuchi Takashi, e Xu Yuwen translator, a cura di. Wang zhan qi hua, wang lu xing xiao bi du!: Tu jie Google wang zhan guan li yuan gong ju : cong fu ze jing ying wang zhan de ren dao qi ye gu wen dou ke shi yong, huo yong rang sou xun jie guo ming lie qian mao de DEO bi yao gong ju! Taibei Shi: Qi feng zi xun gu fen you xian gong si, 2016.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Zui xin wang lu Ying yu. Taibei Xian Xindian Shi: San si tang wen hua shi ye you xian gong si, 1996.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

jun, Huang zhong. Shi yong lu˜ you ying yu. Bei jing: Qing hua ta xue chu ban she, 2010.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

C# Wang luo ying yong bian cheng. 2a ed. Beijing: Ren min you dian chu ban she, 2010.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Più fonti

Capitoli di libri sul tema "Wang lu ying yong"

1

Taber, Douglass F. "Organocatalyzed C-C Ring Construction: The Thomson Synthesis of Streptorubin B". In Organic Synthesis. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780199965724.003.0072.

Testo completo
Abstract (sommario):
Jinxing Ye of the East China University of Science and Technology used (Tetrahedron Lett. 2011, 52, 2715) the Hayashi catalyst to direct the addition of 2 to 1, to give the cyclopropane 3. Jia-Rong Chen and Wen-Jing Xiao of Central China Normal University employed (J. Org. Chem. 2011, 76, 281) a urea catalyst for the addition of 5 to 4. Yasumasa Hamada of Chiba University devised (Tetrahedron Lett. 2011, 52, 987) a different urea catalyst for the addition of 7 to 8, to control both the absolute and relative configuration of 9. Jiyong Hong of Duke University showed (Tetrahedron Lett. 2011, 52, 2468) that the imidazolium-mediated cyclization of 10 proceeded with high diastereoselectivity to give 11. Yixin Lu of the National University of Singapore optimized (J. Am. Chem. Soc. 2011, 133, 1726) a dipeptide-derived phosphine to catalyze the addition of 12 to 13. Karl A. Scheidt of Northwestern University combined (Angew. Chem. Int. Ed. 2011, 50, 1678) a triazolium catalyst with super-stoichiometric Ti(O- i Pr)4 to effect the addition of 15 to 4, to give 16. En route to malyngamide C, Xiao-Ping Cao of Lanzhou University condensed (J. Org. Chem. 2011, 76, 3946) the prochiral commercial monoketal 17 with nitrosobenzene, using proline as a catalyst, to prepare 18. Hong Wang of Miami University showed (Angew. Chem. Int. Ed. 2011, 50, 3484) that a lanthanide-complexed α-amino amide was effective for catalyzing the addition of the prochiral 19 to 4, to give 20. Alexandre Alexakis of the Université de Genève and John C. Stephens of the National University of Ireland, Maynooth, established (Angew. Chem. Int. Ed. 2011, 50, 5095) that the Hayashi catalyst was effective for mediating the addition of 22 to 21, to give the diene 23. Ying-Chun Chen of Sichuan University and Karl Anker Jørgensen of Aarhus University used (J. Am. Chem. Soc. 2011, 133, 5053) the same catalyst for the addition of 24 to 25. The Hayashi catalyst appeared again in the report (Chem. Comm. 2011, 47, 3828) by Magnus Reuping of RWTH Aachen University of the addition of 27 to 28.
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia