Letteratura scientifica selezionata sul tema "Zn diffusion"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Zn diffusion".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Zn diffusion"
Khoulif, S., E. B. Hannech e N. Lamoudi. "Study of Reactive Diffusion in Cu/Zn Diffusion Couple". Indian Journal Of Science And Technology 15, n. 48 (27 dicembre 2022): 2740–47. http://dx.doi.org/10.17485/ijst/v15i48.13.
Testo completoMittal, Jagjiwan, e Kwang-Lung Lin. "Diffusion of elements during reflow ageing of Sn-Zn solder in liquid state on Ni/Cu substrate – theoretical and experimental study". Soldering & Surface Mount Technology 30, n. 3 (4 giugno 2018): 137–44. http://dx.doi.org/10.1108/ssmt-10-2017-0035.
Testo completoSadaiyandi, K., e K. Ramachandran. "Zn Diffusion in ZnTe". physica status solidi (b) 170, n. 2 (1 aprile 1992): K77—K81. http://dx.doi.org/10.1002/pssb.2221700235.
Testo completoLIANG, LIU, YA-LING LIU, YA LIU, HAO-PING PENG, JIAN-HUA WANG e XU-PING SU. "EFFECT OF Mg AND TEMPERATURE ON Fe–Al ALLOY LAYER IN Fe/(Zn–6%Al–x%Mg) SOLID–LIQUID DIFFUSION COUPLES". Surface Review and Letters 24, Supp01 (31 ottobre 2017): 1850010. http://dx.doi.org/10.1142/s0218625x18500105.
Testo completoDayananda, Mysore A. "Selected Analyses and Observations in Multicomponent Diffusion". Defect and Diffusion Forum 297-301 (aprile 2010): 1451–60. http://dx.doi.org/10.4028/www.scientific.net/ddf.297-301.1451.
Testo completoGramlich, A., S. Tandy, E. Frossard, J. Eikenberg e R. Schulin. "Diffusion limitation of zinc fluxes into wheat roots, PLM and DGT devices in the presence of organic ligands". Environmental Chemistry 11, n. 1 (2014): 41. http://dx.doi.org/10.1071/en13106.
Testo completoDas, Sazol Kumar, Young Min Kim, Tae Kwon Ha, Raynald Gauvin e In Ho Jung. "Anisotropic Diffusion Behaviour of Al and Zn in HCP Mg: Diffusion Couple Experiment Using Mg Single Crystal". Materials Science Forum 765 (luglio 2013): 516–20. http://dx.doi.org/10.4028/www.scientific.net/msf.765.516.
Testo completoHu, Zhihua. "Study on microstructure and properties of Zn-Sn coating on sintered Nd-Fe-B magnets by grain boundary diffusion process". Anti-Corrosion Methods and Materials 68, n. 4 (10 agosto 2021): 340–45. http://dx.doi.org/10.1108/acmm-02-2021-2440.
Testo completoKim, Seon Tai, e Dong Chan Moon. "Zn Diffusion in In1-xGaxP". Japanese Journal of Applied Physics 29, Part 1, No. 4 (20 aprile 1990): 627–29. http://dx.doi.org/10.1143/jjap.29.627.
Testo completoTong, Jianbin, Yi Liang, Shicheng Wei, Hongyi Su, Bo Wang, Yuzhong Ren, Yunlong Zhou e Zhongqi Sheng. "Microstructure and Corrosion Resistance of Zn-Al Diffusion Layer on 45 Steel Aided by Mechanical Energy". Materials 12, n. 18 (18 settembre 2019): 3032. http://dx.doi.org/10.3390/ma12183032.
Testo completoTesi sul tema "Zn diffusion"
Peksa, Mikulás̆, Sareeya Bureekaew, Rochus Schmid, Jan Lang e Frank Stallmach. "On the nature of adsorption sites for CO 2 in MOF Zn 2 (bdc) 2 dabco". Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-183198.
Testo completoWehring, Markus, Saeed Amirjalayer, Rochus Schmid e Frank Stallmach. "Anisotropic self-diffusion of guest molecules in Zn 2 (bdc) 2 dabco". Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-185473.
Testo completoWehring, Markus, Saeed Amirjalayer, Rochus Schmid e Frank Stallmach. "Anisotropic self-diffusion of guest molecules in Zn 2 (bdc) 2 dabco". Diffusion fundamentals 16 (2011) 60, S. 1-2, 2011. https://ul.qucosa.de/id/qucosa%3A13803.
Testo completoSeehamart, Kompichit, Tanin Nanok, Jörg Kärger, Christian Chmelik, Rajamani Krishna e Siegfried Fritzsche. "Examining the reason of the observed influence of the lattice flexibility on the diffusion of ethane in Zn(tbip)". Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-189728.
Testo completoPeksa, Mikulás̆, Sareeya Bureekaew, Rochus Schmid, Jan Lang e Frank Stallmach. "On the nature of adsorption sites for CO 2 in MOF Zn 2 (bdc) 2 dabco". Diffusion fundamentals 20 (2013) 55, S. 1, 2013. https://ul.qucosa.de/id/qucosa%3A13631.
Testo completoSeehamart, Kompichit. "Investigation of the diffusion mechanisms of several hydrocarbons in the Metal-Organic-Framework Zn(tbip)". Doctoral thesis, Universitätsbibliothek Leipzig, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-68125.
Testo completoSeehamart, Kompichit, Tanin Nanok, Jörg Kärger, Christian Chmelik, Rajamani Krishna e Siegfried Fritzsche. "Examining the reason of the observed influence of the lattice flexibility on the diffusion of ethane in Zn(tbip)". Diffusion fundamentals 11 (2009) 38, S. 1-2, 2009. https://ul.qucosa.de/id/qucosa%3A13988.
Testo completoGumbmann, Eva Maria. "The effect of minor alloying elements (Mg, Ag, Zn) on the nucleation and precipitation behaviour in AlCuLi alloys". Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAI092.
Testo completoAl-Cu-Li alloys are very attractive for aerospace applications alloys due to their low density, high modulus and high strength. They are experiencing a strong interest since the so-called 3rd generation alloys, with relatively high Cu and low Li content, have been developed with high toughness, fatigue resistance and thermal stability. The main precipitating phase in these alloys is the T1-phase which precipitates on {111}Al-planes with a hexagonal structure. It is known that obtaining a fine dispersion of T1, and hence a high strength requires the presence of dislocations as nucleation sites. In addition, commercial Al-Cu-Li alloys contain several minor alloying elements such as Mg, Ag and Zn, which help reaching the desired properties. Although the effect of these minor additions on precipitation of T1 has been characterized, it has not been understood yet.In this context the aim of this thesis is to systematically investigate the effect of minor additions of Mg, Ag and Zn on precipitation nucleation, precipitation kinetics and related strengthening, and to use a detailed characterization of the microstructure to understand the mechanisms by which the modifications induced by these minor additions take place. In-situ Small-Angle X-ray Scattering and Differential Scanning Calorimetry provide the precipitation kinetics and sequence, respectively. Transmission Electron Microscopy, both in conventional mode, atomically-resolved and in chemical mapping mode, reveals the structure and distribution of phases. Hardness gives access to the strengthening. Compositionally gradient materials are fabricated and characterized to evaluate the effect of alloy composition on precipitation and strengthening.The results reveal that Mg is most effective in order to enhance precipitation kinetics and hardening. Additional Ag and Zn further enhance precipitation kinetics but to a lower extent. The addition of Mg changes the precipitation sequence at all times of ageing. The main differences in early aging conditions are observed with respect to precipitation on dislocations. In Mg-containing alloys, dislocations are decorated by Cu-Mg precursor phases, whereas dislocations in Mg-free alloys are mainly associated to GP-zones which evolve subsequently into θ'-phase. In fully precipitated conditions the microstructure of Mg-containing alloys is dominated by the T1 phase, whereas that of Mg-free alloys is dominated by the θ'-phase. This difference is attributed to the favourable nucleation of T1 on Mg-Cu precursor phases in the Mg-containing alloys, and to the consumption of T1-heterogeneous nucleation sites by the θ'-phase in the Mg-free alloys.The increase of hardness associated to the addition of Ag and Zn is associated to a higher volume fraction of the T1-phase. Ag was found to segregate at the T1/matrix interface and Zn was incorporated into the T1-phase, so that it is assumed that their additions stimulate the formation of T1.The influence of the concentration of the minor solute additions has been characterised by combined space and time-resolved experiments on compositionally gradient materials. It reveals that the effect of an Mg addition on precipitation occurs at a threshold level of ~0.1wt%, suggesting that this concentration is that necessary to form the precursor phase at the dislocations during early ageing
Degaga, Gemechis D. "Physicochemical, Spectroscopic Properties, and Diffusion Mechanisms of Small Hydrocarbon Molecules in MOF-74-Mg/Zn| A Quantum Chemical Investigation". Thesis, Michigan Technological University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10791501.
Testo completoIn petroleum refining industries, the fracturing process allows for the cracking of long-chain hydrocarbons into a mixture of small olefin and paraffin molecules that are then separated via the energetically and monetarily demanding cryogenic distillation process. In an attempt to mitigate both energetic and capital consumptions, selective sorption of light hydrocarbons by tunable sorbents, such as metal-organic frameworks (MOFs), appears to be the most promising alternative for a more efficient gas separation process. MOFs are novel porous materials assembled from inorganic bricks connected by organic linkers. From a crystal engineering stand point, MOFs are advantageous in creating a range of microporous (0.2–2.0 nm) to mesoporous (>50 nm) void cavities, presenting unique opportunities for the functionalization of both the organic linkers and the void. Of significant importance is the MOF-74-M family (M = metal), characterized by a high density of open metal sites, that is not fully coordinated metal centers. This family of MOF is also known as CPO-27-M. MOF-74 have demonstrated more separation potential than other known MOFs and zeolites. Density functional theory (DFT), as implemented within a linear combination of atomic orbital (LCAO) approach, has been used to investigate the selective sorption of C1-C4 hydrocarbons in MOF-74-Mg/Zn. The study was first implemented by adopting a molecular cluster approach, and later by applying periodic boundary conditions (PBC). While both modellistic approaches agree in showing significant differences in binding energies between olefins and paraffins adsorbed at the MOFs’ open metal sites, results reported at the molecular cluster level show underestimation when compared to those obtained at the PBC level. The use of PBC models allow for the correcting of binding energies for basis set superposition error (BSSE), molecular lateral interaction (LI), zero-point energy (ZPE), and thermal energy (TE) contributions. As such, results obtained at the PBC level are directly comparable to experimental calorimetric values (i.e., heat of adsorptions). This work discusses, for the first time, the origin of the fictitious agreement between binding energies obtained with molecular clusters and experimental heats of adsorption, identifying its origin as due to compensation of errors. Spectroscopy studies based on the intensities and frequency shifts with respect to the molecules in the gas phase are presented as a further investigation of the interaction of the small hydrocarbons (C1-C 2) with the open metal sites in MOF-74-Mg. In an attempt to provide a more comprehensive description of the behavior of the hydrocarbon molecules, results from diffusion mechanism studies are also presented. The investigations of the diffusion mechanisms are based on the use of climbing-image nudge elastic band (CI-NEB) simulations, coupled with van der Waals functional (vdW-DF) and ultra-soft pseudopotentials as implemented within the plane-wave (PW) DFT approach. The CI-NEB studies showed that paraffin molecules are more energetically favored to diffuse within and along the cavity of MOF-74-Mg with respect to their olefin counterparts.
Landaverde, Alvarado Carlos Jose. "Sorption, Transport and Gas Separation Properties of Zn-Based Metal Organic Frameworks (MOFs) and their Application in CO₂ Capture". Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/73214.
Testo completoPh. D.
Capitoli di libri sul tema "Zn diffusion"
Mazilkin, A. A., B. Baretzky, S. Enders, Olga A. Kogtenkova, Boris Straumal, Eugen Rabkin e Ruslan Z. Valiev. "Hardness of Nanostructured Al-Zn, Al-Mg and Al-Zn-Mg Alloys Obtained by High-Pressure Torsion". In Defect and Diffusion Forum, 155–60. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908451-17-5.155.
Testo completoEl-Hofy, M. "Grain Boundary Defects Induced Switching in Zn- Bi- Mo Ceramic". In Defect and Diffusion Forum, 13–20. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908451-28-0.13.
Testo completoČermák, Jiří, e Ivo Stloukal. "Zn Diffusion in Binary Base of Light Mg-Al Alloys". In Defect and Diffusion Forum, 165–70. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-35-3.165.
Testo completoMurashov, Vladimir, Boris Straumal e Pavel Protsenko. "Grain Boundary Wetting in Zn Bicrystals by a Sn-Based Melt". In Defect and Diffusion Forum, 235–38. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908451-17-5.235.
Testo completoTorres, Vitor J. B., J. Coutinho e Patrick R. Briddon. "Local Vibrational Modes of Zn-H-P in GaP, InP and ZnTe". In Defect and Diffusion Forum, 31–36. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-37-x.31.
Testo completoBrennan, Sarah, Katrina Bermudez, Nagraj Kulkarni e Yongho Sohn. "Diffusion couple investigation of the Mg-Zn system". In Magnesium Technology 2012, 323–27. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-319-48203-3_59.
Testo completoBrennan, Sarah, Katrina Bermudez, Nagraj Kulkarni e Yongho Sohn. "Diffusion Couple Investigation of the Mg-Zn System". In Magnesium Technology 2012, 323–27. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118359228.ch59.
Testo completoChaubey, Anil K., S. Mohapatra, B. Bhoi, J. L. Gumaste, B. K. Mishra e P. S. Mukherjee. "Effect of Cerium Addition on the Microstructure and Mechanical Properties of Al-Zn-Mg-Cu Alloy". In Defect and Diffusion Forum, 97–103. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908451-61-2.97.
Testo completoChen, Y. C., H. Z. Cui, J. Ding e Y. B. Chen. "Experiments Proving the Mixed Control of the Reactive Diffusion System Zn/Fe3Si with Clamp Press". In Defect and Diffusion Forum, 59–62. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908451-36-1.59.
Testo completoSuarez, Lucia, F. Leysen, C. Masquelier, D. Warichet e Yvan Houbaert. "Effects of Mg Additions on Surface Morphology and Corrosion Resistance of Hot-Dipped Zn Coatings". In Diffusion in Solids and Liquids III, 300–305. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908451-51-5.300.
Testo completoAtti di convegni sul tema "Zn diffusion"
Liu, Jian-Chun, Long Xiao, Zhi-Jun Yue e Gong Zhang. "Atomic diffusion of Zn in Sn-Zn based solder joints subjected to high temperature aging". In 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS). IEEE, 2017. http://dx.doi.org/10.1109/edaps.2017.8277008.
Testo completoCheng, Chen-Lung, N. Ledentsov, M. Agustin, J. R. Kropp, N. N. Ledentsov, Z. Khan e Jin-Wei Shi. "Ultra-Fast Zn-Diffusion/Oxide-Relief 940 nm VCSELs". In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/ofc.2019.w3a.2.
Testo completoKitatani, Takeshi, Kaoru Okamoto, Kenji Uchida e Shigehisa Tanaka. "Long tail Zn diffusion in InGaAsP and InGaAlAs quaternary alloys". In 2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)]. IEEE, 2016. http://dx.doi.org/10.1109/iciprm.2016.7528577.
Testo completoHoxha, Adhurim, Heinrich Oettel, Dietrich Heger, Angelos Angelopoulos e Takis Fildisis. "Calculation Of The Interdiffusion Coefficient In The Cu-Zn Diffusion Couple". In ORGANIZED BY THE HELLENIC PHYSICAL SOCIETY WITH THE COOPERATION OF THE PHYSICS DEPARTMENTS OF GREEK UNIVERSITIES: 7th International Conference of the Balkan Physical Union. AIP, 2010. http://dx.doi.org/10.1063/1.3322515.
Testo completoSchlegl, T. "The Influence of Surface Preparation on Zn-Diffusion Processes in GaSb". In THERMOPHOTOVOLTAIC GENERATION OF ELECTRICITY: Sixth Conference on Thermophotovoltaic Generation of Electricity: TPV6. AIP, 2004. http://dx.doi.org/10.1063/1.1841918.
Testo completoSulima, Oleg V. "Diffusion of Zn in TPV materials: GaSb, InGaSb, InGaAsSb and InAsSbP". In THERMOPHOTOVOLTAIC GENERATION OF ELECTRICITY: Fifth Conference on Thermophotovoltaic Generation of Electricity. AIP, 2003. http://dx.doi.org/10.1063/1.1539395.
Testo completoWada, Morio, Katsutoshi Sakakibara e Yoichi Sekiguchi. "A new method of Zn diffusion into InP for optical device fabrication". In Advanced processing and characterization technologies. AIP, 1991. http://dx.doi.org/10.1063/1.40637.
Testo completoGRABOWSKI, S., e P. ENTEL. "ELEMENTARY DIFFUSION PROCESSES IN AL-CU-ZN ALLOYS: AN AB INITIO STUDY". In From Atoms, Molecules and Clusters in Complex Environment to Thin Films and Multilayers. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812793652_0005.
Testo completoShishiyanu, S. T., e T. S. Shishiyanu. "Impact of light quantum in Rapid Photothermal Diffusion of Zn IN GaAs". In 2010 International Semiconductor Conference (CAS 2010). IEEE, 2010. http://dx.doi.org/10.1109/smicnd.2010.5650620.
Testo completoShima, A., T. Kamizato, A. Takami, S. Karakida, K. Isshiki, H. Matsubara e H. Kumabe. "A Very Low Threshold Current, 780 nm Diffusion Stripe Laser Fabricated by Open-tube, Two-step Zn Diffusion Technique". In 1989 Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1989. http://dx.doi.org/10.7567/ssdm.1989.d-7-4.
Testo completoRapporti di organizzazioni sul tema "Zn diffusion"
Kammerer, Catherine, Nagraj S. Kulkarni, Robert J. Bruce Warmack, Kelly A. Perry, Irina Belova, Prof Graeme Murch e Yong Ho Sohn. Impurity Diffusion Coefficients of Al and Zn in Mg Determined from Solid-to-Solid Diffusion Couples. Office of Scientific and Technical Information (OSTI), agosto 2013. http://dx.doi.org/10.2172/1095717.
Testo completoNorseng, Marshall Stephen. Ga self-diffusion in isotopically enriched GaAs heterostructures doped with Si and Zn. Office of Scientific and Technical Information (OSTI), dicembre 1999. http://dx.doi.org/10.2172/760338.
Testo completoDakshinamurthy, S., S. Shetty, I. Bhat, C. Hitchcock, R. Gutmann, G. Charache e M. Freeman. Fabrication and characterization of GaSb based thermophotovoltaic cells using Zn diffusion from a doped spin-on glass source. Office of Scientific and Technical Information (OSTI), giugno 1998. http://dx.doi.org/10.2172/307843.
Testo completo