Gotowa bibliografia na temat „Hilbert spaces”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Spis treści
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Hilbert spaces”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Hilbert spaces"
Sharma, Sumit Kumar, i Shashank Goel. "Frames in Quaternionic Hilbert Spaces". Zurnal matematiceskoj fiziki, analiza, geometrii 15, nr 3 (25.06.2019): 395–411. http://dx.doi.org/10.15407/mag15.03.395.
Pełny tekst źródłaBellomonte, Giorgia, i Camillo Trapani. "Rigged Hilbert spaces and contractive families of Hilbert spaces". Monatshefte für Mathematik 164, nr 3 (8.10.2010): 271–85. http://dx.doi.org/10.1007/s00605-010-0249-1.
Pełny tekst źródłaSánchez, Félix Cabello. "Twisted Hilbert spaces". Bulletin of the Australian Mathematical Society 59, nr 2 (kwiecień 1999): 177–80. http://dx.doi.org/10.1017/s0004972700032792.
Pełny tekst źródłaCHITESCU, ION, RAZVAN-CORNEL SFETCU i OANA COJOCARU. "Kothe-Bochner spaces that are Hilbert spaces". Carpathian Journal of Mathematics 33, nr 2 (2017): 161–68. http://dx.doi.org/10.37193/cjm.2017.02.03.
Pełny tekst źródłaPisier, Gilles. "Weak Hilbert Spaces". Proceedings of the London Mathematical Society s3-56, nr 3 (maj 1988): 547–79. http://dx.doi.org/10.1112/plms/s3-56.3.547.
Pełny tekst źródłaFabian, M., G. Godefroy, P. Hájek i V. Zizler. "Hilbert-generated spaces". Journal of Functional Analysis 200, nr 2 (czerwiec 2003): 301–23. http://dx.doi.org/10.1016/s0022-1236(03)00044-2.
Pełny tekst źródłaRudolph, Oliver. "Super Hilbert Spaces". Communications in Mathematical Physics 214, nr 2 (listopad 2000): 449–67. http://dx.doi.org/10.1007/s002200000281.
Pełny tekst źródłaNg, Chi-Keung. "Topologized Hilbert spaces". Journal of Mathematical Analysis and Applications 418, nr 1 (październik 2014): 108–20. http://dx.doi.org/10.1016/j.jmaa.2014.03.073.
Pełny tekst źródłavan den Boogaart, Karl Gerald, Juan José Egozcue i Vera Pawlowsky-Glahn. "Bayes Hilbert Spaces". Australian & New Zealand Journal of Statistics 56, nr 2 (czerwiec 2014): 171–94. http://dx.doi.org/10.1111/anzs.12074.
Pełny tekst źródłaSchmitt, L. M. "Semidiscrete Hilbert spaces". Acta Mathematica Hungarica 53, nr 1-2 (marzec 1989): 103–7. http://dx.doi.org/10.1007/bf02170059.
Pełny tekst źródłaRozprawy doktorskie na temat "Hilbert spaces"
Wigestrand, Jan. "Inequalities in Hilbert Spaces". Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9673.
Pełny tekst źródłaThe main result in this thesis is a new generalization of Selberg's inequality in Hilbert spaces with a proof. In Chapter 1 we define Hilbert spaces and give a proof of the Cauchy-Schwarz inequality and the Bessel inequality. As an example of application of the Cauchy-Schwarz inequality and the Bessel inequality, we give an estimate for the dimension of an eigenspace of an integral operator. Next we give a proof of Selberg's inequality including the equality conditions following [Furuta]. In Chapter 2 we give selected facts on positive semidefinite matrices with proofs or references. Then we use this theory for positive semidefinite matrices to study inequalities. First we give a proof of a generalized Bessel inequality following [Akhiezer,Glazman], then we use the same technique to give a new proof of Selberg's inequality. We conclude with a new generalization of Selberg's inequality with a proof. In the last section of Chapter 2 we show how the matrix approach developed in Chapter 2.1 and Chapter 2.2 can be used to obtain optimal frame bounds. We introduce a new notation for frame bounds.
Ameur, Yacin. "Interpolation of Hilbert spaces". Doctoral thesis, Uppsala universitet, Matematiska institutionen, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-1753.
Pełny tekst źródłaAmeur, Yacin. "Interpolation of Hilbert spaces /". Uppsala : Matematiska institutionen, Univ. [distributör], 2001. http://publications.uu.se/theses/91-506-1531-9/.
Pełny tekst źródłaPanayotov, Ivo. "Conjugate gradient in Hilbert spaces". Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82402.
Pełny tekst źródłaBahmani, Fatemeh. "Ternary structures in Hilbert spaces". Thesis, Queen Mary, University of London, 2011. http://qmro.qmul.ac.uk/xmlui/handle/123456789/697.
Pełny tekst źródłaDas, Tushar. "Kleinian Groups in Hilbert Spaces". Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc149579/.
Pełny tekst źródłaHarris, Terri Joan Mrs. "HILBERT SPACES AND FOURIER SERIES". CSUSB ScholarWorks, 2015. https://scholarworks.lib.csusb.edu/etd/244.
Pełny tekst źródłaDieuleveut, Aymeric. "Stochastic approximation in Hilbert spaces". Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE059/document.
Pełny tekst źródłaThe goal of supervised machine learning is to infer relationships between a phenomenon one seeks to predict and “explanatory” variables. To that end, multiple occurrences of the phenomenon are observed, from which a prediction rule is constructed. The last two decades have witnessed the apparition of very large data-sets, both in terms of the number of observations (e.g., in image analysis) and in terms of the number of explanatory variables (e.g., in genetics). This has raised two challenges: first, avoiding the pitfall of over-fitting, especially when the number of explanatory variables is much higher than the number of observations; and second, dealing with the computational constraints, such as when the mere resolution of a linear system becomes a difficulty of its own. Algorithms that take their roots in stochastic approximation methods tackle both of these difficulties simultaneously: these stochastic methods dramatically reduce the computational cost, without degrading the quality of the proposed prediction rule, and they can naturally avoid over-fitting. As a consequence, the core of this thesis will be the study of stochastic gradient methods. The popular parametric methods give predictors which are linear functions of a set ofexplanatory variables. However, they often result in an imprecise approximation of the underlying statistical structure. In the non-parametric setting, which is paramount in this thesis, this restriction is lifted. The class of functions from which the predictor is proposed depends on the observations. In practice, these methods have multiple purposes, and are essential for learning with non-vectorial data, which can be mapped onto a vector in a functional space using a positive definite kernel. This allows to use algorithms designed for vectorial data, but requires the analysis to be made in the non-parametric associated space: the reproducing kernel Hilbert space. Moreover, the analysis of non-parametric regression also sheds some light on the parametric setting when the number of predictors is much larger than the number of observations. The first contribution of this thesis is to provide a detailed analysis of stochastic approximation in the non-parametric setting, precisely in reproducing kernel Hilbert spaces. This analysis proves optimal convergence rates for the averaged stochastic gradient descent algorithm. As we take special care in using minimal assumptions, it applies to numerous situations, and covers both the settings in which the number of observations is known a priori, and situations in which the learning algorithm works in an on-line fashion. The second contribution is an algorithm based on acceleration, which converges at optimal speed, both from the optimization point of view and from the statistical one. In the non-parametric setting, this can improve the convergence rate up to optimality, even inparticular regimes for which the first algorithm remains sub-optimal. Finally, the third contribution of the thesis consists in an extension of the framework beyond the least-square loss. The stochastic gradient descent algorithm is analyzed as a Markov chain. This point of view leads to an intuitive and insightful interpretation, that outlines the differences between the quadratic setting and the more general setting. A simple method resulting in provable improvements in the convergence is then proposed
Boralugoda, Sanath Kumara. "Prox-regular functions in Hilbert spaces". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0006/NQ34740.pdf.
Pełny tekst źródłaLapinski, Felicia. "Hilbert spaces and the Spectral theorem". Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-454412.
Pełny tekst źródłaKsiążki na temat "Hilbert spaces"
Gaussian Hilbert spaces. Cambridge, U.K: Cambridge University Press, 1997.
Znajdź pełny tekst źródłaDebnath, Lokenath. Hilbert spaces with applications. Wyd. 3. Oxford: Academic, 2005.
Znajdź pełny tekst źródłaMlak, W. Hilbert spaces and operator theory. Dordrecht: Boston, 1991.
Znajdź pełny tekst źródłaMashreghi, Javad. Hilbert spaces of analytic functions. Providence, R.I: American Mathematical Society, 2010.
Znajdź pełny tekst źródłaMashreghi, Javad. Hilbert spaces of analytic functions. Providence, R.I: American Mathematical Society, 2010.
Znajdź pełny tekst źródłaJavad, Mashreghi, Ransford Thomas i Seip Kristian 1962-, red. Hilbert spaces of analytic functions. Providence, R.I: American Mathematical Society, 2010.
Znajdź pełny tekst źródłaBanach-Hilbert spaces, vector measures, and group representations. River Edge, NJ: World Scientific, 2002.
Znajdź pełny tekst źródłaSarason, Donald. Sub-Hardy Hilbert spaces in the unit disk. New York: Wiley, 1994.
Znajdź pełny tekst źródłaSimon, Jacques. Banach, Fréchet, Hilbert and Neumann Spaces. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119426516.
Pełny tekst źródła1964-, McCarthy John E., red. Pick interpolation and Hilbert function spaces. Providence, R.I: American Mathematical Society, 2002.
Znajdź pełny tekst źródłaCzęści książek na temat "Hilbert spaces"
D’Angelo, John P. "Hilbert Spaces". W Hermitian Analysis, 45–94. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8526-1_2.
Pełny tekst źródłaRoman, Steven. "Hilbert Spaces". W Advanced Linear Algebra, 263–90. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-2178-2_14.
Pełny tekst źródłaOvchinnikov, Sergei. "Hilbert Spaces". W Universitext, 149–91. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91512-8_7.
Pełny tekst źródłaCicogna, Giampaolo. "Hilbert Spaces". W Undergraduate Lecture Notes in Physics, 1–55. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76165-7_1.
Pełny tekst źródłaGasquet, Claude, i Patrick Witomski. "Hilbert Spaces". W Texts in Applied Mathematics, 141–52. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1598-1_16.
Pełny tekst źródłaKomornik, Vilmos. "Hilbert Spaces". W Lectures on Functional Analysis and the Lebesgue Integral, 3–54. London: Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-6811-9_1.
Pełny tekst źródłaShima, Hiroyuki, i Tsuneyoshi Nakayama. "Hilbert Spaces". W Higher Mathematics for Physics and Engineering, 73–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/b138494_4.
Pełny tekst źródłavan der Vaart, Aad W., i Jon A. Wellner. "Hilbert Spaces". W Weak Convergence and Empirical Processes, 49–51. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4757-2545-2_8.
Pełny tekst źródłaBrokate, Martin, i Götz Kersting. "Hilbert Spaces". W Compact Textbooks in Mathematics, 137–52. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15365-0_12.
Pełny tekst źródłaKubrusly, Carlos S. "Hilbert Spaces". W Elements of Operator Theory, 311–440. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4757-3328-0_5.
Pełny tekst źródłaStreszczenia konferencji na temat "Hilbert spaces"
RANDRIANANTOANINA, BEATA. "A CHARACTERIZATION OF HILBERT SPACES". W Proceedings of the Sixth Conference. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704450_0021.
Pełny tekst źródłaTaddei, Valentina, Luisa Malaguti i Irene Benedetti. "Nonlocal problems in Hilbert spaces". W The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Madrid, Spain). American Institute of Mathematical Sciences, 2015. http://dx.doi.org/10.3934/proc.2015.0103.
Pełny tekst źródłaTang, Wai-Shing. "Biorthogonality and multiwavelets in Hilbert spaces". W International Symposium on Optical Science and Technology, redaktorzy Akram Aldroubi, Andrew F. Laine i Michael A. Unser. SPIE, 2000. http://dx.doi.org/10.1117/12.408620.
Pełny tekst źródłaPope, Graeme, i Helmut Bolcskei. "Sparse signal recovery in Hilbert spaces". W 2012 IEEE International Symposium on Information Theory - ISIT. IEEE, 2012. http://dx.doi.org/10.1109/isit.2012.6283506.
Pełny tekst źródłaMałkiewicz, Przemysław. "Physical Hilbert spaces in quantum gravity". W Proceedings of the MG14 Meeting on General Relativity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813226609_0514.
Pełny tekst źródłaKhimshiashvili, G. "Loop spaces and Riemann-Hilbert problems". W Geometry and Topology of Manifolds. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-19.
Pełny tekst źródłaDeepshikha, Saakshi Garg, Lalit K. Vashisht i Geetika Verma. "On weaving fusion frames for Hilbert spaces". W 2017 International Conference on Sampling Theory and Applications (SampTA). IEEE, 2017. http://dx.doi.org/10.1109/sampta.2017.8024363.
Pełny tekst źródłaGritsutenko, Stanislav, Elina Biberdorf i Rui Dinis. "On the Sampling Theorem in Hilbert Spaces". W Computer Graphics and Imaging. Calgary,AB,Canada: ACTAPRESS, 2013. http://dx.doi.org/10.2316/p.2013.798-012.
Pełny tekst źródłaTuia, Devis, Gustavo Camps-Valls i Manel Martinez-Ramon. "Explicit recursivity into reproducing kernel Hilbert spaces". W ICASSP 2011 - 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011. http://dx.doi.org/10.1109/icassp.2011.5947266.
Pełny tekst źródłaSUQUET, CHARLES. "REPRODUCING KERNEL HILBERT SPACES AND RANDOM MEASURES". W Proceedings of the 5th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835635_0013.
Pełny tekst źródłaRaporty organizacyjne na temat "Hilbert spaces"
Saraivanov, Michael. Quantum Circuit Synthesis using Group Decomposition and Hilbert Spaces. Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.1108.
Pełny tekst źródłaKorezlioglu, H., i C. Martias. Stochastic Integration for Operator Valued Processes on Hilbert Spaces and on Nuclear Spaces. Revision. Fort Belvoir, VA: Defense Technical Information Center, marzec 1986. http://dx.doi.org/10.21236/ada168501.
Pełny tekst źródłaFukumizu, Kenji, Francis R. Bach i Michael I. Jordan. Dimensionality Reduction for Supervised Learning With Reproducing Kernel Hilbert Spaces. Fort Belvoir, VA: Defense Technical Information Center, maj 2003. http://dx.doi.org/10.21236/ada446572.
Pełny tekst źródłaTeolis, Anthony. Discrete Representation of Signals from Infinite Dimensional Hilbert Spaces with Application to Noise Suppression and Compression. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1993. http://dx.doi.org/10.21236/ada453215.
Pełny tekst źródłaSalamon, Dietmar. Realization Theory in Hilbert Space. Fort Belvoir, VA: Defense Technical Information Center, lipiec 1985. http://dx.doi.org/10.21236/ada158172.
Pełny tekst źródłaYao, Jen-Chih. A monotone complementarity problem in Hilbert space. Office of Scientific and Technical Information (OSTI), kwiecień 1990. http://dx.doi.org/10.2172/7043013.
Pełny tekst źródłaYao, Jen-Chih. A generalized complementarity problem in Hilbert space. Office of Scientific and Technical Information (OSTI), marzec 1990. http://dx.doi.org/10.2172/6930669.
Pełny tekst źródłaCottle, Richard W., i Jen-Chih Yao. Pseudo-Monotone Complementarity Problems in Hilbert Space. Fort Belvoir, VA: Defense Technical Information Center, lipiec 1990. http://dx.doi.org/10.21236/ada226477.
Pełny tekst źródłaKallianpur, G., i V. Perez-Abreu. Stochastic Evolution Equations with Values on the Dual of a Countably Hilbert Nuclear Space. Fort Belvoir, VA: Defense Technical Information Center, lipiec 1986. http://dx.doi.org/10.21236/ada174876.
Pełny tekst źródłaMonrad, D., i W. Philipp. Nearby Variables with Nearby Conditional Laws and a Strong Approximation Theorem for Hilbert Space Valued Martingales. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 1989. http://dx.doi.org/10.21236/ada225992.
Pełny tekst źródłaYou might want to see the page in this language: English.