Artykuły w czasopismach na temat „Hybrid Core-Shell Nanoparticles”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Hybrid Core-Shell Nanoparticles”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Barachevsky, V. A. "Photochromic Core-shell Nanoparticles." Current Chinese Science 1, no. 2 (2021): 241–50. http://dx.doi.org/10.2174/2210298101666210114100325.
Pełny tekst źródłaDaigle, Jean-Christophe, and Jerome P. Claverie. "A Simple Method for Forming Hybrid Core-Shell Nanoparticles Suspended in Water." Journal of Nanomaterials 2008 (2008): 1–8. http://dx.doi.org/10.1155/2008/609184.
Pełny tekst źródłaJain, Shweta, Mudit Kumar, Pushpendra Kumar, et al. "Lipid–Polymer Hybrid Nanosystems: A Rational Fusion for Advanced Therapeutic Delivery." Journal of Functional Biomaterials 14, no. 9 (2023): 437. http://dx.doi.org/10.3390/jfb14090437.
Pełny tekst źródłaIslam, Mohammad Ariful, Emma K. G. Reesor, Yingjie Xu, Harshal R. Zope, Bruce R. Zetter, and Jinjun Shi. "Biomaterials for mRNA delivery." Biomaterials Science 3, no. 12 (2015): 1519–33. http://dx.doi.org/10.1039/c5bm00198f.
Pełny tekst źródłaJahns, Mandy, Dawid Peter Warwas, Marc Robert Krey, et al. "Nanoporous hybrid core–shell nanoparticles for sequential release." Journal of Materials Chemistry B 8, no. 4 (2020): 776–86. http://dx.doi.org/10.1039/c9tb01846h.
Pełny tekst źródłaArici, Elif, Dieter Meissner, F. Schäffler, and N. Serdar Sariciftci. "Core/shell nanomaterials in photovoltaics." International Journal of Photoenergy 5, no. 4 (2003): 199–208. http://dx.doi.org/10.1155/s1110662x03000333.
Pełny tekst źródłaHuang, Yuxiong, Aaron N. Fulton, and Arturo A. Keller. "Optimization of porous structure of superparamagnetic nanoparticle adsorbents for higher and faster removal of emerging organic contaminants and PAHs." Environmental Science: Water Research & Technology 2, no. 3 (2016): 521–28. http://dx.doi.org/10.1039/c6ew00066e.
Pełny tekst źródłaZHANG, LI, and LIANGFANG ZHANG. "LIPID–POLYMER HYBRID NANOPARTICLES: SYNTHESIS, CHARACTERIZATION AND APPLICATIONS." Nano LIFE 01, no. 01n02 (2010): 163–73. http://dx.doi.org/10.1142/s179398441000016x.
Pełny tekst źródłaLee, Eunkyung, Jiyoung Jung, Ajeong Choi, et al. "Dually crosslinkable SiO2@polysiloxane core–shell nanoparticles for flexible gate dielectric insulators." RSC Advances 7, no. 29 (2017): 17841–47. http://dx.doi.org/10.1039/c6ra28230j.
Pełny tekst źródłavon der Lühe, Moritz, Ulrike Günther, Andreas Weidner, et al. "SPION@polydehydroalanine hybrid particles." RSC Advances 5, no. 40 (2015): 31920–29. http://dx.doi.org/10.1039/c5ra01737h.
Pełny tekst źródłaDaneshfar, Nader, and Majid Moradi. "An analytical solution for light scattering by metallic cylindrical nanoparticles with core–shell structure." Modern Physics Letters B 30, no. 05 (2016): 1650041. http://dx.doi.org/10.1142/s021798491650041x.
Pełny tekst źródłaSzczęch, Marta, and Krzysztof Szczepanowicz. "Polymeric Core-Shell Nanoparticles Prepared by Spontaneous Emulsification Solvent Evaporation and Functionalized by the Layer-by-Layer Method." Nanomaterials 10, no. 3 (2020): 496. http://dx.doi.org/10.3390/nano10030496.
Pełny tekst źródłaJahns, Mandy, Dawid Peter Warwas, Marc Robert Krey, et al. "Nanoporous hybrid core-shell nanoparticles for sequential release." Journal of Materials Chemistry B 8 (June 5, 2020): 776–86. https://doi.org/10.1039/c9tb01846h.
Pełny tekst źródłaRibeiro, T., E. Coutinho, A. S. Rodrigues, C. Baleizão, and J. P. S. Farinha. "Hybrid mesoporous silica nanocarriers with thermovalve-regulated controlled release." Nanoscale 9, no. 36 (2017): 13485–94. http://dx.doi.org/10.1039/c7nr03395h.
Pełny tekst źródłaPustovalov, V. K., and L. G. Astafyeva. "DEPENDENCE OF OPTICAL PROPERTIES OF TWO-LAYERED METAL-DIELECTRIC SPHERICAL NANOPARTICLES ON TEMPERATURE." Journal of Applied Spectroscopy 89, no. 4 (2022): 470–76. http://dx.doi.org/10.47612/0514-7506-2022-89-4-470-476.
Pełny tekst źródłaPereira, Rute, Tito Trindade, and Joana Barata. "Magnetite–Corrole Hybrid Nanoparticles." Magnetochemistry 4, no. 3 (2018): 37. http://dx.doi.org/10.3390/magnetochemistry4030037.
Pełny tekst źródłaWen, Hui Ying, Hai Feng Fang, and Shen Ling Xiao. "Preparation and Characterization of Magnetic Functional Hybrid Particles." Applied Mechanics and Materials 101-102 (September 2011): 918–21. http://dx.doi.org/10.4028/www.scientific.net/amm.101-102.918.
Pełny tekst źródłaKerkhofs, Stef, Frederic Leroux, Lionel Allouche та ін. "Single-step alcohol-free synthesis of core–shell nanoparticles of β-casein micelles and silica". RSC Adv. 4, № 49 (2014): 25650–57. http://dx.doi.org/10.1039/c4ra03252g.
Pełny tekst źródłaBontempi, Nicolò, Emanuele Cavaliere, Valentina Cappello, Pasqualantonio Pingue, and Luca Gavioli. "Ag@TiO2 nanogranular films by gas phase synthesis as hybrid SERS platforms." Physical Chemistry Chemical Physics 21, no. 45 (2019): 25090–97. http://dx.doi.org/10.1039/c9cp03998h.
Pełny tekst źródłaXia, Jia, Xia Luo, Jin Huang, Jiajun Ma, and Junxiao Yang. "Preparation of core/shell organic–inorganic hybrid polymer nanoparticles and their application to toughening poly(methyl methacrylate)." RSC Advances 11, no. 54 (2021): 34036–47. http://dx.doi.org/10.1039/d1ra03880j.
Pełny tekst źródłaZelepukin, I. V., V. O. Shipunova, A. B. Mirkasymov, P. I. Nikitin, M. P. Nikitin, and S. M. Deyev. "Synthesis and Characterization of Hybrid Core-Shell Fe3O4/SiO2 Nanoparticles for Biomedical Applications." Acta Naturae 9, no. 4 (2017): 58–65. http://dx.doi.org/10.32607/20758251-2017-9-4-58-65.
Pełny tekst źródłaKhatami, Mehrdad, Hajar Alijani, Meysam Nejad, and Rajender Varma. "Core@shell Nanoparticles: Greener Synthesis Using Natural Plant Products." Applied Sciences 8, no. 3 (2018): 411. http://dx.doi.org/10.3390/app8030411.
Pełny tekst źródłaXu, Xia, Yan Long, Pengpeng Lei, et al. "A pH-responsive assembly based on upconversion nanocrystals and ultrasmall nickel nanoparticles." Journal of Materials Chemistry C 5, no. 37 (2017): 9666–72. http://dx.doi.org/10.1039/c7tc02665j.
Pełny tekst źródłaKim, Seokho, Bo-Hyun Kim, Young Ki Hong, et al. "In Situ Enhanced Raman and Photoluminescence of Bio-Hybrid Ag/Polymer Nanoparticles by Localized Surface Plasmon for Highly Sensitive DNA Sensors." Polymers 12, no. 3 (2020): 631. http://dx.doi.org/10.3390/polym12030631.
Pełny tekst źródłaYu, Wei, Nikunjkumar Visaveliya, Christophe A. Serra, et al. "Preparation and Deep Characterization of Composite/Hybrid Multi-Scale and Multi-Domain Polymeric Microparticles." Materials 12, no. 23 (2019): 3921. http://dx.doi.org/10.3390/ma12233921.
Pełny tekst źródłaWang, Jianying, Kai Song, Lei Wang, et al. "Formation of hybrid core–shell microgels induced by autonomous unidirectional migration of nanoparticles." Materials Horizons 3, no. 1 (2016): 78–82. http://dx.doi.org/10.1039/c5mh00024f.
Pełny tekst źródłaLopes Dias, Marcos, Marcos A. S. Pedroso, C. Cheila G. Mothé, and Chiaki Azuma. "Core Shell Silica-Silicon Hybrid Nanoparticles: Synthesis and Characterization." Journal of Metastable and Nanocrystalline Materials 22 (August 2004): 83–90. http://dx.doi.org/10.4028/www.scientific.net/jmnm.22.83.
Pełny tekst źródłaVoronina, N. V., I. B. Meshkov, V. D. Myakushev, N. V. Demchenko, T. V. Laptinskaya, and A. M. Muzafarov. "Inorganic core/organic shell hybrid nanoparticles: Synthesis and characterization." Nanotechnologies in Russia 3, no. 5-6 (2008): 321–29. http://dx.doi.org/10.1134/s1995078008050078.
Pełny tekst źródłaLiu, Fulei, Xiaoxian Huang, Lingfei Han, et al. "Improved druggability of gambogic acid using core–shell nanoparticles." Biomaterials Science 7, no. 3 (2019): 1028–42. http://dx.doi.org/10.1039/c8bm01154k.
Pełny tekst źródłaPappas, George S., Chaoying Wan, Chris Bowen, David M. Haddleton, and Xiaobin Huang. "Functionalization of BaTiO3 nanoparticles with electron insulating and conducting organophosphazene-based hybrid materials." RSC Advances 7, no. 32 (2017): 19674–83. http://dx.doi.org/10.1039/c7ra02186k.
Pełny tekst źródłaSaykova, Diana, Svetlana Saikova, Yuri Mikhlin, Marina Panteleeva, Ruslan Ivantsov, and Elena Belova. "Synthesis and Characterization of Core–Shell Magnetic Nanoparticles NiFe2O4@Au." Metals 10, no. 8 (2020): 1075. http://dx.doi.org/10.3390/met10081075.
Pełny tekst źródłaWong, John E., Akhilesh K. Gaharwar, Detlef Müller-Schulte, Dhirendra Bahadur, and Walter Richtering. "Magnetic Nanoparticle–Polyelectrolyte Interaction: A Layered Approach for Biomedical Applications." Journal of Nanoscience and Nanotechnology 8, no. 8 (2008): 4033–40. http://dx.doi.org/10.1166/jnn.2008.an02.
Pełny tekst źródłaSpadaro, Donatella, Maria A. Iatì, Maria G. Donato, et al. "Scaling of optical forces on Au–PEG core–shell nanoparticles." RSC Advances 5, no. 113 (2015): 93139–46. http://dx.doi.org/10.1039/c5ra20922f.
Pełny tekst źródłaSvinko, Vasilisa O., and Elena V. Solovyeva. "Preparation and optical property analysis of gold–polymer hybrids for surface-enhanced Raman scattering-assisted bioimaging." Journal of Optical Technology 91, no. 11 (2024): 765. https://doi.org/10.1364/jot.91.000765.
Pełny tekst źródłaWang, Yanxia, Heng Yang, Si Chen, Hua Chen, and Zhihua Chai. "Fabrication of Hybrid Polymeric Micelles Containing AuNPs and Metalloporphyrin in the Core." Polymers 11, no. 3 (2019): 390. http://dx.doi.org/10.3390/polym11030390.
Pełny tekst źródłaLi, Joshua Qing Song, Hai Wang, and Yan Qiu Wang. "Preparation of Silica/Polymer Hybrid Nanoparticles via a Semi-Continuous Soup-Free Emulsion Polymerization." Advanced Materials Research 1120-1121 (July 2015): 233–42. http://dx.doi.org/10.4028/www.scientific.net/amr.1120-1121.233.
Pełny tekst źródłaCapek, Ignác. "Noble Metal Nanoparticles and Their (Bio) Conjugates. II. Preparation." International Journal of Chemistry 8, no. 1 (2016): 86. http://dx.doi.org/10.5539/ijc.v8n1p86.
Pełny tekst źródłaJiang, Lai, Hiang Wee Lee, and Say Chye Joachim Loo. "Therapeutic lipid-coated hybrid nanoparticles against bacterial infections." RSC Advances 10, no. 14 (2020): 8497–517. http://dx.doi.org/10.1039/c9ra10921h.
Pełny tekst źródłaHWANG, TAEJIN, HEUNGYEOL LEE, HOHYEONG KIM, GYUNTAK KIM, and GYEONGJIN MUN. "ENHANCEMENT OF ELECTROCHROMIC DURABILITY OF A FILM MADE OF SILICA-POLYANILINE CORE-SHELL NANOPARTICLES." Surface Review and Letters 17, no. 01 (2010): 39–44. http://dx.doi.org/10.1142/s0218625x10013722.
Pełny tekst źródłaEl-Habashy, Salma E., Amal H. El-Kamel, Marwa M. Essawy, Elsayeda-Zeinab A. Abdelfattah, and Hoda M. Eltaher. "Engineering 3D-printed core–shell hydrogel scaffolds reinforced with hybrid hydroxyapatite/polycaprolactone nanoparticles for in vivo bone regeneration." Biomaterials Science 9, no. 11 (2021): 4019–39. http://dx.doi.org/10.1039/d1bm00062d.
Pełny tekst źródłaZhang, Ruirui, Shuang Wei, Leihou Shao, Lili Tong, and Yan Wu. "Imaging Intracellular Drug/siRNA Co-Delivery by Self-Assembly Cross-Linked Polyethylenimine with Fluorescent Core-Shell Silica Nanoparticles." Polymers 14, no. 9 (2022): 1813. http://dx.doi.org/10.3390/polym14091813.
Pełny tekst źródłaZhou, Jing, Jie Hu, Mu Li, et al. "Hydrogen bonding directed co-assembly of polyoxometalates and polymers to core–shell nanoparticles." Materials Chemistry Frontiers 2, no. 11 (2018): 2070–75. http://dx.doi.org/10.1039/c8qm00291f.
Pełny tekst źródłaKhadam, Mohsin, Habib Ullah, Saif Ullah, M. Athar Faheem Riaz, and Hamza Khan Lodhi. "Polymer Stabilized Metal Nanoparticles for Catalytic Degradation of Methylene Blue in Water." International Journal of Economic and Environmental Geology 13, no. 3 (2022): 15–21. http://dx.doi.org/10.46660/ijeeg.v13i3.38.
Pełny tekst źródłaBajpai, Ankur, and Stéphane Carlotti. "The Effect of Hybridized Carbon Nanotubes, Silica Nanoparticles, and Core-Shell Rubber on Tensile, Fracture Mechanics and Electrical Properties of Epoxy Nanocomposites." Nanomaterials 9, no. 7 (2019): 1057. http://dx.doi.org/10.3390/nano9071057.
Pełny tekst źródłaZhang, Ranran, Risheng Yao, Binbin Ding, et al. "Fabrication of Upconverting Hybrid Nanoparticles for Near-Infrared Light Triggered Drug Release." Advances in Materials Science and Engineering 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/169210.
Pełny tekst źródłaMikoliunaite, Lina, Evaldas Stankevičius, Sonata Adomavičiūtė-Grabusovė, et al. "Magneto-Plasmonic Nanoparticles Generated by Laser Ablation of Layered Fe/Au and Fe/Au/Fe Composite Films for SERS Application." Coatings 13, no. 9 (2023): 1523. http://dx.doi.org/10.3390/coatings13091523.
Pełny tekst źródłaWu, Si, Lei Lei, Yuzheng Xia, et al. "PNIPAM-immobilized gold-nanoparticles with colorimetric temperature-sensing and reusable temperature-switchable catalysis properties." Polymer Chemistry 12, no. 47 (2021): 6903–13. http://dx.doi.org/10.1039/d1py01180d.
Pełny tekst źródłaLiu, A., L. Yang, M. Verwegen, D. Reardon, and J. J. L. M. Cornelissen. "Construction of core-shell hybrid nanoparticles templated by virus-like particles." RSC Advances 7, no. 89 (2017): 56328–34. http://dx.doi.org/10.1039/c7ra11310b.
Pełny tekst źródłaHahn, Braden. "78511 Synthesis of Novel Core/Shell Polymeric Nanoparticles for Controlled Drug Release." Journal of Clinical and Translational Science 5, s1 (2021): 100. http://dx.doi.org/10.1017/cts.2021.657.
Pełny tekst źródłaRaman, Subashini, Syed Mahmood, and Azizur Rahman. "A Review on Lipid- Polymer Hybrid Nanoparticles and Preparation with Recent Update." Materials Science Forum 981 (March 2020): 322–27. http://dx.doi.org/10.4028/www.scientific.net/msf.981.322.
Pełny tekst źródła