Artykuły w czasopismach na temat „Injectable in-situ forming hydrogel”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Injectable in-situ forming hydrogel”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Chen, Ying, Xiaomin Wang, Yudong Huang, et al. "In Situ-Forming Cellulose/Albumin-Based Injectable Hydrogels for Localized Antitumor Therapy." Polymers 13, no. 23 (2021): 4221. http://dx.doi.org/10.3390/polym13234221.
Pełny tekst źródłaHo, Emily, Anthony Lowman, and Michele Marcolongo. "In situ apatite forming injectable hydrogel." Journal of Biomedical Materials Research Part A 83A, no. 1 (2007): 249–56. http://dx.doi.org/10.1002/jbm.a.31457.
Pełny tekst źródłaWang, Lixuan, Shiyan Dong, Yutong Liu, et al. "Fabrication of Injectable, Porous Hyaluronic Acid Hydrogel Based on an In-Situ Bubble-Forming Hydrogel Entrapment Process." Polymers 12, no. 5 (2020): 1138. http://dx.doi.org/10.3390/polym12051138.
Pełny tekst źródłaMashaqbeh, Hadeia, Batool Al-Ghzawi, and Fatima BaniAmer. "Exploring the Formulation and Approaches of Injectable Hydrogels Utilizing Hyaluronic Acid in Biomedical Uses." Advances in Pharmacological and Pharmaceutical Sciences 2024 (May 27, 2024): 1–19. http://dx.doi.org/10.1155/2024/3869387.
Pełny tekst źródłaKwon, Jin Seon, So Mi Yoon, Doo Yeon Kwon, et al. "Injectable in situ-forming hydrogel for cartilage tissue engineering." Journal of Materials Chemistry B 1, no. 26 (2013): 3314. http://dx.doi.org/10.1039/c3tb20105h.
Pełny tekst źródłaKocak, Fatma Z., Abdullah C. S. Talari, Muhammad Yar, and Ihtesham U. Rehman. "In-Situ Forming pH and Thermosensitive Injectable Hydrogels to Stimulate Angiogenesis: Potential Candidates for Fast Bone Regeneration Applications." International Journal of Molecular Sciences 21, no. 5 (2020): 1633. http://dx.doi.org/10.3390/ijms21051633.
Pełny tekst źródłaTurabee, Md Hasan, Thavasyappan Thambi, Huu Thuy Trang Duong, Ji Hoon Jeong, and Doo Sung Lee. "A pH- and temperature-responsive bioresorbable injectable hydrogel based on polypeptide block copolymers for the sustained delivery of proteins in vivo." Biomaterials Science 6, no. 3 (2018): 661–71. http://dx.doi.org/10.1039/c7bm00980a.
Pełny tekst źródłaKim, Da Yeon, Hyeon Jin Ju, Jae Ho Kim, Sangdun Choi, and Moon Suk Kim. "Injectable in situ forming hydrogel gene depot to improve the therapeutic effect of STAT3 shRNA." Biomaterials Science 9, no. 12 (2021): 4459–72. http://dx.doi.org/10.1039/d1bm00624j.
Pełny tekst źródłaKing, Jasmine L., Alain Valdivia, Shawn D. Hingtgen, and S. Rahima Benhabbour. "Injectable Tumoricidal Neural Stem Cell-Laden Hydrogel for Treatment of Glioblastoma Multiforme—An In Vivo Safety, Persistence, and Efficacy Study." Pharmaceutics 17, no. 1 (2024): 3. https://doi.org/10.3390/pharmaceutics17010003.
Pełny tekst źródłaZhang, Yajie, Hong Chen, Tingting Zhang, et al. "Fast-forming BMSC-encapsulating hydrogels through bioorthogonal reaction for osteogenic differentiation." Biomaterials Science 6, no. 10 (2018): 2578–81. http://dx.doi.org/10.1039/c8bm00689j.
Pełny tekst źródłaBegum, Bushra, Trideva Sastri Koduru, Syeda Noor Madni, et al. "Dual-Self-Crosslinking Effect of Alginate-Di-Aldehyde with Natural and Synthetic Co-Polymers as Injectable In Situ-Forming Biodegradable Hydrogel." Gels 10, no. 10 (2024): 649. http://dx.doi.org/10.3390/gels10100649.
Pełny tekst źródłaTavakol, Moslem, Ebrahim Vasheghani-Farahani, Mohammad Amin Mohammadifar, and Maryam Dehghan-Niri. "Effect of gamma irradiation on the physicochemical and rheological properties of enzyme-catalyzed tragacanth-based injectable hydrogels." Journal of Polymer Engineering 39, no. 5 (2019): 442–49. http://dx.doi.org/10.1515/polyeng-2018-0366.
Pełny tekst źródłaKorytkowska-Walach, Anna, Monika Smiga-Matuszowicz, and Jan Lukaszczyk. "Polymeric in situ forming systems for biomedical applications. Part II. Injectable hydrogel systems." Polimery 60, no. 07/08 (2015): 435–47. http://dx.doi.org/10.14314/polimery.2015.435.
Pełny tekst źródłaK., C. Anaswaraashok* R. S. Anusree Dr. Jisha mohanan. "Injectable In-Situ Forming Hydrogels: A Versatile Depot Platform for Localized and Postoperative Cancer Therapy." International Journal of Pharmaceutical Sciences 3, no. 5 (2025): 1785–803. https://doi.org/10.5281/zenodo.15383345.
Pełny tekst źródłaLi, Fei, Jinlin He, Mingzu Zhang та Peihong Ni. "A pH-sensitive and biodegradable supramolecular hydrogel constructed from a PEGylated polyphosphoester-doxorubicin prodrug and α-cyclodextrin". Polymer Chemistry 6, № 28 (2015): 5009–14. http://dx.doi.org/10.1039/c5py00620a.
Pełny tekst źródłaFlegeau, Killian, Olivier Gauthier, Gildas Rethore, et al. "Injectable silanized hyaluronic acid hydrogel/biphasic calcium phosphate granule composites with improved handling and biodegradability promote bone regeneration in rabbits." Biomaterials Science 9, no. 16 (2021): 5640–51. http://dx.doi.org/10.1039/d1bm00403d.
Pełny tekst źródłaBrijesh, Kumar, K. Singh Amit, K. Prasad Raj, S. Singh Chandra, and Dwivedi Vivek. "Formulation and Evaluation of an Injectable In-Situ Forming Hydrogel of Dacarbazine as Anticancer Agent." Pharmaceutical and Chemical Journal 3, no. 1 (2016): 100–108. https://doi.org/10.5281/zenodo.13739933.
Pełny tekst źródłaGoder Orbach, Daniella, Ilana Roitman, Geffen Coster Kimhi, and Meital Zilberman. "Formulation-Property Effects in Novel Injectable and Resilient Natural Polymer-Based Hydrogels for Soft Tissue Regeneration." Polymers 16, no. 20 (2024): 2879. http://dx.doi.org/10.3390/polym16202879.
Pełny tekst źródłaKim, Hea Kyung, Woo Sun Shim, Sung Eun Kim, et al. "Injectable In Situ–Forming pH/Thermo-Sensitive Hydrogel for Bone Tissue Engineering." Tissue Engineering Part A 15, no. 4 (2009): 923–33. http://dx.doi.org/10.1089/ten.tea.2007.0407.
Pełny tekst źródłaYang, Jeong-A., Junseok Yeom, Byung Woo Hwang, Allan S. Hoffman, and Sei Kwang Hahn. "In situ-forming injectable hydrogels for regenerative medicine." Progress in Polymer Science 39, no. 12 (2014): 1973–86. http://dx.doi.org/10.1016/j.progpolymsci.2014.07.006.
Pełny tekst źródłaYoung, Stuart A., Hossein Riahinezhad, and Brian G. Amsden. "In situ-forming, mechanically resilient hydrogels for cell delivery." Journal of Materials Chemistry B 7, no. 38 (2019): 5742–61. http://dx.doi.org/10.1039/c9tb01398a.
Pełny tekst źródłaYan, Shifeng, Xin Zhang, Kunxi Zhang, et al. "Injectable in situ forming poly(l-glutamic acid) hydrogels for cartilage tissue engineering." Journal of Materials Chemistry B 4, no. 5 (2016): 947–61. http://dx.doi.org/10.1039/c5tb01488c.
Pełny tekst źródłaPhan, V. H. Giang, Mohanapriya Murugesan, Panchanathan Manivasagan, et al. "Injectable Hydrogel Based on Protein-Polyester Microporous Network as an Implantable Niche for Active Cell Recruitment." Pharmaceutics 14, no. 4 (2022): 709. http://dx.doi.org/10.3390/pharmaceutics14040709.
Pełny tekst źródłaAndrgie, Abegaz Tizazu, Haile Fentahun Darge, Tefera Worku Mekonnen, et al. "Ibuprofen-Loaded Heparin Modified Thermosensitive Hydrogel for Inhibiting Excessive Inflammation and Promoting Wound Healing." Polymers 12, no. 11 (2020): 2619. http://dx.doi.org/10.3390/polym12112619.
Pełny tekst źródłaAbdelghafour, Mohamed M., Ágota Deák, Tamás Kiss, et al. "Self-Assembling Injectable Hydrogel for Controlled Drug Delivery of Antimuscular Atrophy Drug Tilorone." Pharmaceutics 14, no. 12 (2022): 2723. http://dx.doi.org/10.3390/pharmaceutics14122723.
Pełny tekst źródłaAmirthalingam, Sivashanmugam, Ashvin Ramesh, Seunghun S. Lee, Nathaniel S. Hwang, and Rangasamy Jayakumar. "Injectable in Situ Shape-Forming Osteogenic Nanocomposite Hydrogel for Regenerating Irregular Bone Defects." ACS Applied Bio Materials 1, no. 4 (2018): 1037–46. http://dx.doi.org/10.1021/acsabm.8b00225.
Pełny tekst źródłaLiu, Hui, Jia Liu, Chao Qi, et al. "Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture." Acta Biomaterialia 35 (April 2016): 228–37. http://dx.doi.org/10.1016/j.actbio.2016.02.028.
Pełny tekst źródłaShin, Gi Ru, Hee Eun Kim, Jae Ho Kim, Sangdun Choi, and Moon Suk Kim. "Advances in Injectable In Situ-Forming Hydrogels for Intratumoral Treatment." Pharmaceutics 13, no. 11 (2021): 1953. http://dx.doi.org/10.3390/pharmaceutics13111953.
Pełny tekst źródłaKocak, Fatma Z., Muhammad Yar, and Ihtesham U. Rehman. "Hydroxyapatite-Integrated, Heparin- and Glycerol-Functionalized Chitosan-Based Injectable Hydrogels with Improved Mechanical and Proangiogenic Performance." International Journal of Molecular Sciences 23, no. 10 (2022): 5370. http://dx.doi.org/10.3390/ijms23105370.
Pełny tekst źródłaMa, Zhenzhen, Cheng Tao, Lin Sun, et al. "In Situ Forming Injectable Hydrogel For Encapsulation Of Nanoiguratimod And Sustained Release Of Therapeutics." International Journal of Nanomedicine Volume 14 (November 2019): 8725–38. http://dx.doi.org/10.2147/ijn.s214507.
Pełny tekst źródłaDing, Xiaoya, Ye Wang, Jiaying Liu, et al. "Injectable In Situ Forming Double-Network Hydrogel To Enhance Transplanted Cell Viability and Retention." Chemistry of Materials 33, no. 15 (2021): 5885–95. http://dx.doi.org/10.1021/acs.chemmater.1c00635.
Pełny tekst źródłaKim, Da, Yoon Kim, Hai Lee, Shin Moon, Seung-Yup Ku, and Moon Kim. "In Vivo Osteogenic Differentiation of Human Embryoid Bodies in an Injectable in Situ-Forming Hydrogel." Materials 6, no. 7 (2013): 2978–88. http://dx.doi.org/10.3390/ma6072978.
Pełny tekst źródłaLi, Fei, Jinlin He, Mingzu Zhang, Kam Chiu Tam та Peihong Ni. "Injectable supramolecular hydrogels fabricated from PEGylated doxorubicin prodrug and α-cyclodextrin for pH-triggered drug delivery". RSC Advances 5, № 67 (2015): 54658–66. http://dx.doi.org/10.1039/c5ra06156c.
Pełny tekst źródłaMohammadi, Marzieh, Malihe Karimi, Bizhan Malaekeh-Nikouei, Mohammad Torkashvand, and Mona Alibolandi. "Hybrid in situ- forming injectable hydrogels for local cancer therapy." International Journal of Pharmaceutics 616 (March 2022): 121534. http://dx.doi.org/10.1016/j.ijpharm.2022.121534.
Pełny tekst źródłaSongkroh, Titima, Hongguo Xie, Weiting Yu, et al. "Injectable in situ forming chitosan-based hydrogels for curcumin delivery." Macromolecular Research 23, no. 1 (2015): 53–59. http://dx.doi.org/10.1007/s13233-015-3006-4.
Pełny tekst źródłaChouhan, Dimple, Tshewuzo-u. Lohe, Pavan Kumar Samudrala, and Biman B. Mandal. "In Situ Forming Injectable Silk Fibroin Hydrogel Promotes Skin Regeneration in Full Thickness Burn Wounds." Advanced Healthcare Materials 7, no. 24 (2018): 1801092. http://dx.doi.org/10.1002/adhm.201801092.
Pełny tekst źródłaNguyen, Hy D., Munsik Jang, Hai V. Ngo, et al. "Physicochemical Properties, Drug Release and In Situ Depot-Forming Behaviors of Alginate Hydrogel Containing Poorly Water-Soluble Aripiprazole." Gels 10, no. 12 (2024): 781. https://doi.org/10.3390/gels10120781.
Pełny tekst źródłaNaderi-Meshkin, Hojjat, Kristin Andreas, Maryam M. Matin, et al. "Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering." Cell Biology International 38, no. 1 (2013): 72–84. http://dx.doi.org/10.1002/cbin.10181.
Pełny tekst źródłaDutta, Kingshuk, Ritam Das, Jing Ling, et al. "In Situ Forming Injectable Thermoresponsive Hydrogels for Controlled Delivery of Biomacromolecules." ACS Omega 5, no. 28 (2020): 17531–42. http://dx.doi.org/10.1021/acsomega.0c02009.
Pełny tekst źródłaTran, Ngoc Quyen, Yoon Ki Joung, Eugene Lih, Kyung Min Park, and Ki Dong Park. "RGD-conjugated In Situ forming hydrogels as cell-adhesive injectable scaffolds." Macromolecular Research 19, no. 3 (2011): 300–306. http://dx.doi.org/10.1007/s13233-011-0309-y.
Pełny tekst źródłaDimatteo, Robert, Nicole J. Darling, and Tatiana Segura. "In situ forming injectable hydrogels for drug delivery and wound repair." Advanced Drug Delivery Reviews 127 (March 2018): 167–84. http://dx.doi.org/10.1016/j.addr.2018.03.007.
Pełny tekst źródłaFiorica, Calogero, Fabio Salvatore Palumbo, Giovanna Pitarresi, Alessandro Gulino, Stefano Agnello, and Gaetano Giammona. "Injectable in situ forming hydrogels based on natural and synthetic polymers for potential application in cartilage repair." RSC Advances 5, no. 25 (2015): 19715–23. http://dx.doi.org/10.1039/c4ra16411c.
Pełny tekst źródłaDehghan-Baniani, Dorsa, Yin Chen, Dong Wang, Reza Bagheri, Atefeh Solouk, and Hongkai Wu. "Injectable in situ forming kartogenin-loaded chitosan hydrogel with tunable rheological properties for cartilage tissue engineering." Colloids and Surfaces B: Biointerfaces 192 (August 2020): 111059. http://dx.doi.org/10.1016/j.colsurfb.2020.111059.
Pełny tekst źródłaKwon, Jin Seon, Sung Won Kim, Doo Yeon Kwon, et al. "In vivo osteogenic differentiation of human turbinate mesenchymal stem cells in an injectable in situ-forming hydrogel." Biomaterials 35, no. 20 (2014): 5337–46. http://dx.doi.org/10.1016/j.biomaterials.2014.03.045.
Pełny tekst źródłaLee, Yunki, Jin Woo Bae, Jin Woo Lee, Wonhee Suh, and Ki Dong Park. "Enzyme-catalyzed in situ forming gelatin hydrogels as bioactive wound dressings: effects of fibroblast delivery on wound healing efficacy." J. Mater. Chem. B 2, no. 44 (2014): 7712–18. http://dx.doi.org/10.1039/c4tb01111b.
Pełny tekst źródłaMarques, Ana Camila, Paulo C. Costa, Sérgia Velho, and Maria Helena Amaral. "Rheological and Injectability Evaluation of Sterilized Poloxamer-407-Based Hydrogels Containing Docetaxel-Loaded Lipid Nanoparticles." Gels 10, no. 5 (2024): 307. http://dx.doi.org/10.3390/gels10050307.
Pełny tekst źródłaHe, Jinlin, Mingzu Zhang, and Peihong Ni. "Rapidly in situ forming polyphosphoester-based hydrogels for injectable drug delivery carriers." Soft Matter 8, no. 22 (2012): 6033. http://dx.doi.org/10.1039/c2sm25274k.
Pełny tekst źródłaYan, Shifeng, Taotao Wang, Xing Li, et al. "Fabrication of injectable hydrogels based on poly(l-glutamic acid) and chitosan." RSC Advances 7, no. 28 (2017): 17005–19. http://dx.doi.org/10.1039/c7ra01864a.
Pełny tekst źródłaZhang, Yu, Yi Sun, Xia Yang, Jöns Hilborn, Arend Heerschap, and Dmitri A. Ossipov. "Injectable In Situ Forming Hybrid Iron Oxide-Hyaluronic Acid Hydrogel for Magnetic Resonance Imaging and Drug Delivery." Macromolecular Bioscience 14, no. 9 (2014): 1249–59. http://dx.doi.org/10.1002/mabi.201400117.
Pełny tekst źródłaKhan, Samiullah, Muhammad Usman Minhas, Muhammad Tahir Aqeel, et al. "RETRACTED: Khan et al. Poly (N-vinylcaprolactam-grafted-sodium alginate) Based Injectable pH/Thermo Responsive In Situ Forming Depot Hydrogels for Prolonged Controlled Anticancer Drug Delivery; In Vitro, In Vivo Characterization and Toxicity Evaluation. Pharmaceutics 2022, 14, 1050." Pharmaceutics 16, no. 1 (2024): 149. http://dx.doi.org/10.3390/pharmaceutics16010149.
Pełny tekst źródła