Gotowa bibliografia na temat „Pulmonary Pathophysiology”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Spis treści
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Pulmonary Pathophysiology”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Pulmonary Pathophysiology"
Cherniack, Neil S. "Pulmonary Pathophysiology". Annals of Internal Medicine 131, nr 5 (7.09.1999): 399. http://dx.doi.org/10.7326/0003-4819-131-5-199909070-00022.
Pełny tekst źródłaGonzalez, Norberto C. "PULMONARY PATHOPHYSIOLOGY". Shock 11, nr 2 (luty 1999): 152. http://dx.doi.org/10.1097/00024382-199902000-00018.
Pełny tekst źródłaGrippi, Michael A. "PULMONARY PATHOPHYSIOLOGY". Shock 5, nr 4 (kwiecień 1996): 311. http://dx.doi.org/10.1097/00024382-199604000-00013.
Pełny tekst źródłaChamarthy, Murthy R., Asha Kandathil i Sanjeeva P. Kalva. "Pulmonary vascular pathophysiology". Cardiovascular Diagnosis and Therapy 8, nr 3 (czerwiec 2018): 208–13. http://dx.doi.org/10.21037/cdt.2018.01.08.
Pełny tekst źródłaGao, Yuansheng, i J. Usha Raj. "Pathophysiology of Pulmonary Hypertension". Colloquium Series on Integrated Systems Physiology: From Molecule to Function 9, nr 6 (22.11.2017): i—104. http://dx.doi.org/10.4199/c00158ed1v01y201710isp078.
Pełny tekst źródłaAngerio, Allan D., i Peter A. Kot. "Pathophysiology of pulmonary edema". Critical Care Nursing Quarterly 17, nr 3 (listopad 1994): 21–26. http://dx.doi.org/10.1097/00002727-199411000-00004.
Pełny tekst źródłaHigenbottam, Tim. "Pathophysiology of Pulmonary Hypertension". Chest 105, nr 2 (luty 1994): 7S—12S. http://dx.doi.org/10.1378/chest.105.2_supplement.7s.
Pełny tekst źródłaKlayton, Ronald J. "PULMONARY PATHOPHYSIOLOGY — THE ESSENTIALS". Military Medicine 158, nr 2 (1.02.1993): A9. http://dx.doi.org/10.1093/milmed/158.2.a9a.
Pełny tekst źródłaShibuya, Kazutoshi, Chikako Hasegawa, Shigeharu Hamatani, Tsutomu Hatori, Tadashi Nagayama, Hiroko Nonaka, Tsunehiro Ando i Megumi Wakayama. "Pathophysiology of pulmonary aspergillosis". Journal of Infection and Chemotherapy 10, nr 3 (2004): 138–45. http://dx.doi.org/10.1007/s10156-004-0315-5.
Pełny tekst źródłaMatthay, Michael A. "Pathophysiology of Pulmonary Edema". Clinics in Chest Medicine 6, nr 3 (wrzesień 1985): 301–14. http://dx.doi.org/10.1016/s0272-5231(21)00366-x.
Pełny tekst źródłaRozprawy doktorskie na temat "Pulmonary Pathophysiology"
Walsh, Robert Leo. "Leukocyte elastase and anti-elastases in pulmonary emphysema". Title page, contents and abstract only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phw2261.pdf.
Pełny tekst źródłaMuzaffar, Saima. "Reactive oxygen species and the pathophysiology of adult respiratory distress syndrome". Thesis, University of Bristol, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271916.
Pełny tekst źródłaTauriainen, M. Peter. "Negative pressure pulmonary edema, a clinical review and study of its pathophysiology". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq23521.pdf.
Pełny tekst źródłaOtsuka, Kojiro. "Sputum YKL-40 Levels and Pathophysiology of Asthma and Chronic Obstructive Pulmonary Disease". Kyoto University, 2012. http://hdl.handle.net/2433/152498.
Pełny tekst źródłaMcLennan, Geoffrey. "Oxygen toxicity and radiation injury to the pulmonary system". Title page, index and forward only, 1997. http://web4.library.adelaide.edu.au/theses/09PH/09phm164.pdf.
Pełny tekst źródłaMittal, Manish [Verfasser]. "Role of NADPH oxidases and KDR channels in the pathophysiology of hypoxia induced pulmonary hypertension / Manish Mittal". Gießen : Universitätsbibliothek, 2009. http://d-nb.info/1060563207/34.
Pełny tekst źródłaMason, Nicholas. "Mechanisms of altitude-related cough". Doctoral thesis, Universite Libre de Bruxelles, 2012. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209711.
Pełny tekst źródłaWidespread reports have long existed of a debilitating cough affecting visitors to high altitude that can incapacitate the sufferer and, on occasions, be severe enough to cause rib fractures (22, 34, 35). The prevalence of cough at altitude has been estimated to be between 22 and 42% at between 4200 and 4900 m in the Everest region of Nepal (10, 29). Traditionally the cough was attributed to the inspiration of the cold, dry air characteristic of the high altitude environment (37) but no attempts were made to confirm this aetiology. In the first formal study of cough at high altitude, nocturnal cough frequency was found to increase with increasing altitude during a trek to Everest Base Camp (5300 m) and massively so in 3 climbers on whom recordings were made up to 7000 m on Everest (8). After 9 days at 5300 m the citric acid cough threshold, a measure of the sensitivity of the cough reflex arc, was significantly reduced compared with both sea level and arrival at 5300 m.
During Operation Everest II, a simulated climb of Mount Everest in a hypobaric chamber, the majority of the subjects were troubled above 7000 m by pain and dryness in the throat and an irritating cough despite the chamber being maintained at a relative humidity of between 72 and 82% and a temperature of 23ºC (18). This argued against the widely held view that altitude-related cough was due to the inspiration of cold, dry air.
In the next major hypobaric chamber study, Operation Everest III, nocturnal cough frequency and citric acid cough threshold were measured on the 8 subjects in the study. The chamber temperature was maintained between 18 and 24ºC and relative humidity between 30 and 60% (24). This work is presented in Chapter 2 and, demonstrated an increase in nocturnal cough frequency with increasing altitude which immediately returned to control values on descent to sea level. Citric acid cough threshold was reduced at 8000 m compared to both sea level and 5000 m values. Changes in citric acid cough threshold at lower altitudes may not have been detected because of the constraints on subject numbers in the chamber. The study still however demonstrated an increase in clinical cough and a reduction in the citric acid cough threshold at extreme altitude, despite controlled environmental conditions, and thus refuted the long held belief that altitude-related cough is solely due to the inspiration of cold, dry air.
If altitude-related cough is not simply due to the inspiration of cold, dry air, other possible aetiologies are:
•\
Doctorat en Sciences médicales
info:eu-repo/semantics/nonPublished
Yoshioka, Eliane Muta. "Alterações pulmonares e sistêmicas em modelo de lesão pulmonar aguda de etiologia pulmonar e extra pulmonar após ventilação mecânica de curto prazo". Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/5/5144/tde-03092010-144329/.
Pełny tekst źródłaLung inflammation may vary according to the primary site of injury and may be affected by the mechanical stress generated by mechanical ventilation (MV). Objectives: to address possible differences in lung and systemic responses in pulmonary and extra pulmonary ALI after mechanical ventilation. Methods: BALB/c mice were divided in twelve groups of six animals. In pulmonary and extrapulmonary control or ALI groups received either saline or LPS (intratracheally instilled or intraperitoneally injected), respectively. Ventilated groups were either recruited or not with a single recruitment maneuver (SRM) reaching 45 cm H2O. Results: At baseline ALI P and ALI EXP non ventilated groups presented the same level of inflammation; a statistically significant difference in density of inflammatory cells was noted in ALI P MV (3,84±1,28 cells/2) compared to ALI EXP MV (1,75±0,14 cells/2), p=0,013. The same was observed in ALI P SRM (2,92±0,44 cells/2) compared to ALI EXP SRM (1,46±0,23 cells/2) ventilated groups (p<0,0001). ALI P showed a statistically significant increase in El (56,19 ± 12,26 cm H2O) in comparison to ALI EXP (26,88 ± 36,38 cm H2O) after SRM (p = 0,029). No statistical differences were observed in kidney oxidative stress. Conclusion: We observed a different pattern of response in lung inflammation and mechanics comparing pulmonary and extra pulmonary ALI, submitted to short term mechanical ventilation. Although mechanical ventilation represents a fundamental tool to stabilize critical patients, it is essential to individualize the approach of the ventilatory treatment
Rondelet, Benoît. "Médiation humorale de l'hypertension artérielle pulmonaire dans un modèle de cardiopathie congénitale à shunt systémo-pulmonaire chez le porcelet en croissance". Doctoral thesis, Universite Libre de Bruxelles, 2008. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210373.
Pełny tekst źródłaAissa, Jamal. "Pathophysiologie et pharmacologie cardio-pulmonaire et inflammatoire du PAF-ACETHER". Paris 5, 1993. http://www.theses.fr/1993PA05CD07.
Pełny tekst źródłaKsiążki na temat "Pulmonary Pathophysiology"
Pulmonary pathophysiology. Philadelphia: Lippincott, 1995.
Znajdź pełny tekst źródłaPulmonary pathophysiology: The essentials. Wyd. 7. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins, 2008.
Znajdź pełny tekst źródłaB, West John, red. Pulmonary pathophysiology--the essentials. Wyd. 4. Baltimore: Williams & Wilkins, 1992.
Znajdź pełny tekst źródłaWest, John B. (John Burnard), red. Pulmonary pathophysiology: The essentials. Wyd. 8. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health, 2012.
Znajdź pełny tekst źródłaPulmonary pathophysiology: The essentials. Wyd. 3. Baltimore: Williams & Wilkins, 1987.
Znajdź pełny tekst źródłaB, West John, red. Pulmonary pathophysiology--the essentials. Wyd. 5. Baltimore, Md: Williams & Wilkins, 1998.
Znajdź pełny tekst źródłaPulmonary pathophysiology: A clinical approach. Wyd. 3. New York: McGraw-Hill Medical, 2010.
Znajdź pełny tekst źródłaWorkshop on "Chronic Pulmonary Hyperinflation" (1988 Montescano, Italy). Chronic pulmonary hyperinflation. London: Springer-Verlag, 1989.
Znajdź pełny tekst źródłaPulmonary circulation: Diseases and their treatment. Wyd. 3. London: Hodder Arnold, 2011.
Znajdź pełny tekst źródłaBittar, E. Edward. Pulmonary biology in health and disease. Redaktor Springer-Verlag. New York: Springer, 2002.
Znajdź pełny tekst źródłaCzęści książek na temat "Pulmonary Pathophysiology"
Kaul, Sunny. "Pathophysiology". W Managing Chronic Obstructive Pulmonary Disease, 1–12. West Sussex, England: John Wiley & Sons Ltd, 2008. http://dx.doi.org/10.1002/9780470697603.ch1.
Pełny tekst źródłaVanzeller, Mafalda, Marta Drummond i João Carlos Winck. "Chronic respiratory failure – pathophysiology". W Pulmonary Rehabilitation, 399–408. Second edition. | Boca Raton : CRC Press, [2020] | Preceded by Pulmonary rehabilitation / Claudio F. Donner, Nicolino Ambrosino, Roger Goldstein. 2005.: CRC Press, 2020. http://dx.doi.org/10.1201/9781351015592-41.
Pełny tekst źródłaRabinovitch, Marlene. "Pulmonary Vascular Pathophysiology". W Pediatric Cardiovascular Medicine, 71–80. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781444398786.ch5.
Pełny tekst źródłaLajoie, Annie C., Vincent Mainguy, SéBastien Bonnet i Steeve Provencher. "Pulmonary vascular diseases". W Applied Respiratory Pathophysiology, 119–47. Boca Raton : CRC Press, [2017]: CRC Press, 2017. http://dx.doi.org/10.1201/9781315177052-7.
Pełny tekst źródłaMilot, Julie, i Mathieu Morissette. "Chronic obstructive pulmonary disease". W Applied Respiratory Pathophysiology, 97–118. Boca Raton : CRC Press, [2017]: CRC Press, 2017. http://dx.doi.org/10.1201/9781315177052-6.
Pełny tekst źródłaSchols, Annemie M. W. J., i Emiel F. M. Wouters. "Pulmonary rehabilitation". W Recent Advances in the Pathophysiology of COPD, 167–87. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7939-2_11.
Pełny tekst źródłaSchrump, David S. "Pulmonary Malignancies: Pathophysiology and Treatment". W Principles and Practice of Geriatric Surgery, 406–32. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3432-4_29.
Pełny tekst źródłaRizzo, Alicia N., Dustin R. Fraidenburg i Jason X. J. Yuan. "Pulmonary Vascular Physiology and Pathophysiology". W PanVascular Medicine, 4057–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-37078-6_202.
Pełny tekst źródłaRizzo, Alicia N., Dustin R. Fraidenburg i Jason X. J. Yuan. "Pulmonary Vascular Physiology and Pathophysiology". W PanVascular Medicine, 1–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-37393-0_202-1.
Pełny tekst źródłaMitani, Yoshihide. "Pathophysiology and Genetics: BMPR2". W Diagnosis and Treatment of Pulmonary Hypertension, 115–24. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-287-840-3_9.
Pełny tekst źródłaStreszczenia konferencji na temat "Pulmonary Pathophysiology"
Zhao, Y. C., S. E. Rees, S. Andreassen i S. Kjaergaard. "Simulation of Pulmonary Pathophysiology During Spontaneous Breathing". W 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE, 2005. http://dx.doi.org/10.1109/iembs.2005.1615892.
Pełny tekst źródłaGhanem, M., A. Justet, M. Jaillet, M. Hachem, T. Boghanim, A. Vadel, A. Mailleux i B. Crestani. "Involvement of FGFR4 in Pulmonary Fibrosis Pathophysiology". W American Thoracic Society 2021 International Conference, May 14-19, 2021 - San Diego, CA. American Thoracic Society, 2021. http://dx.doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a4220.
Pełny tekst źródłaLammers, Steven R., Phil H. Kao, Lian Tian, Kendall Hunter, H. Jerry Qi, Joseph Albietz, Stephen Hofmeister, Kurt Stenmark i Robin Shandas. "Quantification of Elastin Residual Stretch in Fresh Artery Tissue: Impact on Artery Material Properties and Pulmonary Hypertension Pathophysiology". W ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206793.
Pełny tekst źródłaSiler, S. Q., D. Longo, J. Woodhead, C. Battista, Z. Kenz, S. Tallapaka, G. Liu, G. Generaux, S. Ermakov i L. Shoda. "Using Quantitative Systems Pharmacology Modeling to Understand the Pathophysiology of Idiopathic Pulmonary Fibrosis". W American Thoracic Society 2021 International Conference, May 14-19, 2021 - San Diego, CA. American Thoracic Society, 2021. http://dx.doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a4648.
Pełny tekst źródłaAlamer, Amal, Rhys Jones, Chris Ward, Michael Drinnan, Alexander John Simpson, Michael Griffin, Joanne Patterson i Ian Forrest. "Oropharyngeal swallowing pathophysiology in patients with idiopathic pulmonary fibrosis: A consecutive descriptive case series". W ERS International Congress 2020 abstracts. European Respiratory Society, 2020. http://dx.doi.org/10.1183/13993003.congress-2020.3370.
Pełny tekst źródłaDumas, Sébastien J., Frédéric Perros, Catherine Rucker-Martin, Elodie Gouadon, Marc J. C. Humbert i Sylvia Cohen-Kaminsky. "Glutamate And NMDA Receptors: New Signaling Pathway Involved In The Pathophysiology Of Pulmonary Hypertension". W American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a4747.
Pełny tekst źródłaAlamer, A., R. Jones, C. Ward, M. Drinnan, AJ Simpson, M. Griffin, J. Patterson i I. Forrest. "S127 Oropharyngeal swallowing pathophysiology in patients with idiopathic pulmonary fibrosis: A consecutive descriptive case series". W British Thoracic Society Winter Meeting, Wednesday 17 to Friday 19 February 2021, Programme and Abstracts. BMJ Publishing Group Ltd and British Thoracic Society, 2021. http://dx.doi.org/10.1136/thorax-2020-btsabstracts.132.
Pełny tekst źródłaHe, M., K. Qing, N. Tustison, L. A. Myc, J. MacLeod, R. Nunoo-Asare, J. Cassani i in. "Probing Early-Stage Pulmonary Pathophysiology in Young Healthy E-cigarettes Users Using Hyperpolarized 129Xe MRI". W American Thoracic Society 2021 International Conference, May 14-19, 2021 - San Diego, CA. American Thoracic Society, 2021. http://dx.doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a1113.
Pełny tekst źródłaTan, Yan, i Wei Tan. "Reducing Upstream Compliance Induces Downstream High Pulsatility Flow-Dependent Inflammatory Response in Pulmonary Endothelial Cells via TLR2/NF-KB Pathway". W ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80900.
Pełny tekst źródłaLee, Namheon, Michael D. Taylor, Kan N. Hor i Rupak K. Banerjee. "Non-Invasive Calculation of Energy Loss in Pulmonary Arteries Using 4D Phase Contrast MRI Measurement". W ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80525.
Pełny tekst źródłaRaporty organizacyjne na temat "Pulmonary Pathophysiology"
Hurt, Holcombe H., Suzanne A. Hernandez, Wallace B. Baze, Theresa M. Tezak-Reid i Jill R. Keeler. Pathophysiologic Mechanisms of Three Pulmonary Edemagenic Compounds: The Role of Toxic Oxygen Species. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 1992. http://dx.doi.org/10.21236/ada251135.
Pełny tekst źródłaYou might want to see the page in this language: English.