Artigos de revistas sobre o tema "Hopkinson pressure bars (SHPB)"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Hopkinson pressure bars (SHPB)".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Harrigan, John J., Bright Ahonsi, Elisavet Palamidi e Steve R. Reid. "Experimental and numerical investigations on the use of polymer Hopkinson pressure bars". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, n.º 2023 (28 de agosto de 2014): 20130201. http://dx.doi.org/10.1098/rsta.2013.0201.
Texto completo da fontePham, Thanh Nam, Hyo Seong Choi e Jong Bong Kim. "A Numerical Investigation into the Tensile Split Hopkinson Pressure Bars Test for Sheet Metals". Applied Mechanics and Materials 421 (setembro de 2013): 464–67. http://dx.doi.org/10.4028/www.scientific.net/amm.421.464.
Texto completo da fonteQuinn, R. M., L. H. Zhang, M. J. Cox, D. Townsend, T. Cartwright, G. Aldrich-Smith, P. A. Hooper e J. P. Dear. "Development and Validation of a Hopkinson Bar for Hazardous Materials". Experimental Mechanics 60, n.º 9 (18 de agosto de 2020): 1275–88. http://dx.doi.org/10.1007/s11340-020-00638-w.
Texto completo da fonteKariem, Muhammad Agus, John H. Beynon e Dong Ruan. "Numerical Simulation of Double Specimens in Split Hopkinson Pressure Bar Testing". Materials Science Forum 654-656 (junho de 2010): 2483–86. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.2483.
Texto completo da fonteBaranowski, Pawel, Roman Gieleta, Jerzy Malachowski, Krzysztof Damaziak e Lukasz Mazurkiewicz. "SPLIT HOPKINSON PRESSURE BAR IMPULSE EXPERIMENTAL MEASUREMENT WITH NUMERICAL VALIDATION". Metrology and Measurement Systems 21, n.º 1 (1 de março de 2014): 47–58. http://dx.doi.org/10.2478/mms-2014-0005.
Texto completo da fonteNie, Hailiang, Weifeng Ma, Junjie Ren, Ke Wang, Jun Cao, Wei Dang, Tian Yao e Kang Wang. "Size Effect in the Split Hopkinson Pressure Bar Experiment". Journal of Physics: Conference Series 2160, n.º 1 (1 de janeiro de 2022): 012065. http://dx.doi.org/10.1088/1742-6596/2160/1/012065.
Texto completo da fonteAdorna, Marcel, Jan Falta, Tomáš Fíla e Petr Zlámal. "PREPROCESSING OF HOPKINSON BAR EXPERIMENT DATA: FILTER ANALYSIS". Acta Polytechnica CTU Proceedings 18 (23 de outubro de 2018): 77. http://dx.doi.org/10.14311/app.2018.18.0077.
Texto completo da fonteZhang, Xing, Bao Cheng Li, Zhi Min Zhang e Zhi Wen Wang. "Investigation on Deformation in ZK60 at High Strain Rate". Materials Science Forum 488-489 (julho de 2005): 527–30. http://dx.doi.org/10.4028/www.scientific.net/msf.488-489.527.
Texto completo da fonteZhao, Peng Duo, Yu Wang, Jian Ye Du, Lei Zhang, Zhi Peng Du e Fang Yun Lu. "Using Split Hopkinson Pressure Bars to Perform Large Strain Compression Tests on Neoprene at Intermediate and High Strain Rates". Advanced Materials Research 631-632 (janeiro de 2013): 458–62. http://dx.doi.org/10.4028/www.scientific.net/amr.631-632.458.
Texto completo da fonteLee, Sang Hyun, Brian Tuazon e Hyung Seop Shin. "Construction of Data Acquisition/Processing System for Precise Measurement in Split Hopkinson Pressure Bar Test". Applied Mechanics and Materials 566 (junho de 2014): 554–59. http://dx.doi.org/10.4028/www.scientific.net/amm.566.554.
Texto completo da fonteSHU, DONG WEI, CHUN QI LUO e GUO XING LU. "NUMERICAL SIMULATIONS OF THE INFLUENCE OF STRIKER BAR LENGTH ON SHPB MEASUREMENTS". International Journal of Modern Physics B 22, n.º 31n32 (30 de dezembro de 2008): 5813–18. http://dx.doi.org/10.1142/s0217979208051212.
Texto completo da fontePeng, Kang, Ke Gao, Jian Liu, Yujiao Liu, Zhenyu Zhang, Xiang Fan, Xuyan Yin, Yongliang Zhang e Gun Huang. "Experimental and Numerical Evaluation of Rock Dynamic Test with Split-Hopkinson Pressure Bar". Advances in Materials Science and Engineering 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/2048591.
Texto completo da fonteButt, Hafiz Sana Ullah, e Pu Xue. "Wave Dispersion and Attenuation in Viscoelastic Split Hopkinson Pressure Bar". Key Engineering Materials 535-536 (janeiro de 2013): 547–50. http://dx.doi.org/10.4028/www.scientific.net/kem.535-536.547.
Texto completo da fonteLee, Ouk Sub, Yong Hwan Han e Dong Hyeok Kim. "Influence of Temperature and Heat-Aged Condition on the Deformation Behavior of Rubber Material Using SHPB Technique with a Pulse Shaper". Key Engineering Materials 353-358 (setembro de 2007): 619–26. http://dx.doi.org/10.4028/www.scientific.net/kem.353-358.619.
Texto completo da fonteZuanetti, Bryan, Kyle J. Ramos, Carl M. Cady, Chris S. Meredith, Daniel T. Casem, Adam Golder e Cynthia A. Bolme. "Miniature Beryllium Split-Hopkinson Pressure Bars for Extending the Range of Achievable Strain-Rates". Metals 12, n.º 11 (28 de outubro de 2022): 1834. http://dx.doi.org/10.3390/met12111834.
Texto completo da fonteChurch, Philip, Rory Cornish, Ian Cullis, Peter Gould e Ian Lewtas. "Using the split Hopkinson pressure bar to validate material models". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, n.º 2023 (28 de agosto de 2014): 20130294. http://dx.doi.org/10.1098/rsta.2013.0294.
Texto completo da fonteZhang, Dan, Zhiwu Zhu e Zhijie Liu. "Dynamic Mechanical Behavior and Numerical Simulation of Frozen Soil under Impact Loading". Shock and Vibration 2016 (2016): 1–16. http://dx.doi.org/10.1155/2016/3049097.
Texto completo da fonteLu, Fang Yun, Xiao Feng Wang, Rong Chen, Xiang Yu Li, Duo Zhang, Yu Liang Lin, Chao Yang Zhou e Shi Yong Wu. "Comparison Investigation of Tensile Fracture Properties of Al Alloy at Different Dynamic Loadings". Key Engineering Materials 535-536 (janeiro de 2013): 156–59. http://dx.doi.org/10.4028/www.scientific.net/kem.535-536.156.
Texto completo da fonteCorallo, Luca, e Patricia Verleysen. "The split Hopkinson bar bulge setup: a novel dynamic biaxial test method". EPJ Web of Conferences 250 (2021): 01019. http://dx.doi.org/10.1051/epjconf/202125001019.
Texto completo da fonteTarfaoui, Mostapha. "Dynamic Composite Materials Characterisation with Hopkinson Bars: Design and Development of New Dynamic Compression Systems". Journal of Composites Science 7, n.º 1 (11 de janeiro de 2023): 33. http://dx.doi.org/10.3390/jcs7010033.
Texto completo da fonteMcArthur, Jennifer, Christopher Salisbury, Duane Cronin, Michael Worswick e Kevin Williams. "High Strain Rate Characterization of Shock Absorbing Materials for Landmine Protection Concepts". Shock and Vibration 10, n.º 3 (2003): 179–86. http://dx.doi.org/10.1155/2003/961910.
Texto completo da fonteBendarma, Amine, Tomasz Jankowiak, Alexis Rusinek, Tomasz Lodygowski, Bin Jia, María Henar Miguélez e Maciej Klosak. "Dynamic Behavior of Aluminum Alloy Aw 5005 Undergoing Interfacial Friction and Specimen Configuration in Split Hopkinson Pressure Bar System at High Strain Rates and Temperatures". Materials 13, n.º 20 (16 de outubro de 2020): 4614. http://dx.doi.org/10.3390/ma13204614.
Texto completo da fonteDemiral, Murat, Anish Roy e Vadim V. Silberschmidt. "Dynamic Behavior of Advanced Ti Alloy under Impact Loading: Experimental and Numerical Analysis". Applied Mechanics and Materials 70 (agosto de 2011): 207–12. http://dx.doi.org/10.4028/www.scientific.net/amm.70.207.
Texto completo da fonteZhao, Zhangyong, Yanyu Qiu e Mingyang Wang. "Effects of Strain Rate and Initial Density on the Dynamic Mechanical Behaviour of Dry Calcareous Sand". Shock and Vibration 2019 (22 de julho de 2019): 1–10. http://dx.doi.org/10.1155/2019/3526727.
Texto completo da fonteHou, B., S. B. Tan, R. Xiao e Han Zhao. "Impact Combined Shear-Compression Testing of Honeycombs Using a Rotatable Hopkinson Bar". Key Engineering Materials 725 (dezembro de 2016): 168–73. http://dx.doi.org/10.4028/www.scientific.net/kem.725.168.
Texto completo da fonteFíla, Tomáš, Petr Zlámal, Jan Falta, Tomáš Doktor, Petr Koudelka, Daniel Kytýř, Marcel Adorna et al. "Testing of Auxetic Materials Using Hopkinson Bar and Digital Image Correlation". EPJ Web of Conferences 183 (2018): 02045. http://dx.doi.org/10.1051/epjconf/201818302045.
Texto completo da fonteHou, Bing, Meng Zhao, Pei Yang e Yu Long Li. "Capture of Shear Crack Propagation in Metallic Glass by High-Speed Camera and In Situ SEM". Key Engineering Materials 626 (agosto de 2014): 162–70. http://dx.doi.org/10.4028/www.scientific.net/kem.626.162.
Texto completo da fonteKii, Nobuhiko, Takeshi Iwamoto, Alexis Rusinek e Tomasz Jankowiak. "A Study on Reduction of Friction in Impact Compressive Test Based on the Split Hopkinson Pressure Bar Method by Using a Hollow Specimen". Applied Mechanics and Materials 566 (junho de 2014): 548–53. http://dx.doi.org/10.4028/www.scientific.net/amm.566.548.
Texto completo da fonteAdorna, Marcel, Petr Zlámal, Tomáš Fíla, Jan Falta, Markus Felten, Michael Fries e Anne Jung. "TESTING OF HYBRID NICKEL-POLYURETHANE FOAMS AT HIGH STRAIN-RATES USING HOPKINSON BAR AND DIGITAL IMAGE CORRELATION". Acta Polytechnica CTU Proceedings 18 (23 de outubro de 2018): 72. http://dx.doi.org/10.14311/app.2018.18.0072.
Texto completo da fonteChen, Lu, Lan Qiao, Jianming Yang e Qingwen Li. "Laboratory Investigation of Energy Propagation and Scattering Characteristics in Cylindrical Rock Specimens". Advances in Civil Engineering 2018 (24 de setembro de 2018): 1–7. http://dx.doi.org/10.1155/2018/2052781.
Texto completo da fonteXie, Beixin, Peidong Xu, Liqun Tang, Yongrou Zhang, Kejia Xu, Hong Zhang, Zejia Liu, Licheng Zhou, Yiping Liu e Zhenyu Jiang. "Dynamic Mechanical Properties of Polyvinyl Alcohol Hydrogels Measured by Double-Striker Electromagnetic Driving SHPB System". International Journal of Applied Mechanics 11, n.º 02 (março de 2019): 1950018. http://dx.doi.org/10.1142/s1758825119500182.
Texto completo da fonteDoktor, Tomáš, Tomáš Fíla, Petr Zlámal, Daniel Kytýř e Ondřej Jiroušek. "HIGH STRAIN-RATE COMPRESSIVE TESTING OF FILLING MATERIALS FOR INTER-PENETRATING PHASE COMPOSITES". Acta Polytechnica CTU Proceedings 25 (6 de dezembro de 2019): 21–24. http://dx.doi.org/10.14311/app.2019.25.0021.
Texto completo da fontePei, Pei, Zhongcai Pei e Zhiyong Tang. "Numerical and Theoretical Analysis of the Inertia Effects and Interfacial Friction in SHPB Test Systems". Materials 13, n.º 21 (28 de outubro de 2020): 4809. http://dx.doi.org/10.3390/ma13214809.
Texto completo da fonteGavrus, Adinel, Florina Bucur, Adrian Rotariu e Sorin Cănănău. "Analysis of Metallic Materials Behavior during Severe Loadings Using a FE Modeling of the SHPB Test Based on a Numerical Calibration of Elastic Strains with Respect to the Raw Measurements and on the Inverse Analysis Principle". Key Engineering Materials 554-557 (junho de 2013): 1133–46. http://dx.doi.org/10.4028/www.scientific.net/kem.554-557.1133.
Texto completo da fonteHong, S. N., H. B. Li e L. F. Rong. "Experimental Study on Stress Wave Propagation Crossing the Jointed Specimen with Different JRCs". Shock and Vibration 2021 (3 de novembro de 2021): 1–12. http://dx.doi.org/10.1155/2021/3096253.
Texto completo da fonteMiao, Chun-He, Liang-Zhu Yuan, Jian-Hua Lu, Peng-Fei Wang e Song-Lin Xu. "Deformation evolution and diffusion characteristics of PMMA under impact loading". Acta Physica Sinica 71, n.º 21 (2022): 216201. http://dx.doi.org/10.7498/aps.71.20220740.
Texto completo da fonteRen, Kerong, Rong Chen, Yuliang Lin, Shun Li, Xianfeng Zhang e Jun Dong. "Probing the Impact Energy Release Behavior of Al/Ni-Based Reactive Metals with Experimental and Numerical Methods". Metals 9, n.º 5 (28 de abril de 2019): 499. http://dx.doi.org/10.3390/met9050499.
Texto completo da fonteZhang, Zhi Gang, Meng Shen Li, Xiao Long Wang, Xiao Lei Zhong e Qing Li. "Ø100mm SHPB Equipment and its Application". Applied Mechanics and Materials 99-100 (setembro de 2011): 891–95. http://dx.doi.org/10.4028/www.scientific.net/amm.99-100.891.
Texto completo da fonteGanorkar, Kavita, Ketan Arora, Lekhani Gaur, M. D. Goel e Tanusree Chakraborty. "Dynamic Characterization of Concrete using Split Hopkinson Pressure Bar". Proceedings of the 12th Structural Engineering Convention, SEC 2022: Themes 1-2 1, n.º 1 (19 de dezembro de 2022): 1217–21. http://dx.doi.org/10.38208/acp.v1.643.
Texto completo da fonteKariem, Muhammad A., Dong Ruan e John H. Beynon. "Numerical Study of Round-Robin Tests on the Split Hopkinson Pressure Bar Technique". Key Engineering Materials 535-536 (janeiro de 2013): 518–21. http://dx.doi.org/10.4028/www.scientific.net/kem.535-536.518.
Texto completo da fonteJin, Hong Bin. "Numerical Simulation the Stress Uniformity in Split Hopkinson Pressure Bar Testing". Advanced Materials Research 634-638 (janeiro de 2013): 2861–64. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.2861.
Texto completo da fonteAfdhal, Afdhal, Leonardo Gunawan e Tatacipta Dirgantara. "Experimental Work for Bar Straightness Effect Evaluation of Split Hopkinson Pressure Bar". Journal of Engineering and Technological Sciences 53, n.º 6 (31 de dezembro de 2021): 210613. http://dx.doi.org/10.5614/j.eng.technol.sci.2021.53.6.13.
Texto completo da fonteLei, Jin Tao, Ming Hua Zhang e Jian Kang Chen. "Electro-Conductive Property of Polymeric Composite under Impact Loading Using a Modified SHPB". Advanced Materials Research 291-294 (julho de 2011): 1243–46. http://dx.doi.org/10.4028/www.scientific.net/amr.291-294.1243.
Texto completo da fonteChen, Jiangping, Weijun Tao, Shi Huan e Chong Xu. "Data processing of wave propagation in viscoelastic split Hopkinson pressure bar". AIP Advances 12, n.º 4 (1 de abril de 2022): 045210. http://dx.doi.org/10.1063/5.0083888.
Texto completo da fonteMauko, Anja, Branko Nečemer e Zoran Ren. "INVERSE COMPUTATIONAL DETERMINATION OF JOHNSON-COOK PARAMETERS USING THE SHPB TEST APPARATUS". Acta Polytechnica CTU Proceedings 25 (6 de dezembro de 2019): 64–67. http://dx.doi.org/10.14311/app.2019.25.0064.
Texto completo da fonteFadillah, Hafiz, Sigit Puji Santosa, Leonardo Gunawan, Akbar Afdhal e Agus Purwanto. "Dynamic High Strain Rate Characterization of Lithium-Ion Nickel–Cobalt–Aluminum (NCA) Battery Using Split Hopkinson Tensile/Pressure Bar Methodology". Energies 13, n.º 19 (26 de setembro de 2020): 5061. http://dx.doi.org/10.3390/en13195061.
Texto completo da fonteJia, Bin, Zheng Liang Li, Lu Cheng e Hua Chuan Yao. "Experimental Study on Dynamic Mechanical Behaviour of Concrete with High Temperature". Advanced Materials Research 194-196 (fevereiro de 2011): 1109–13. http://dx.doi.org/10.4028/www.scientific.net/amr.194-196.1109.
Texto completo da fonteLee, Ouk Sub, Jong Won Lee e Sung Hyun Kim. "Dynamic Deformation Behavior of Rubber (NR/NBR) under High Strain Rate Compressive Loading". Key Engineering Materials 297-300 (novembro de 2005): 172–77. http://dx.doi.org/10.4028/www.scientific.net/kem.297-300.172.
Texto completo da fonteZuo, Li Sheng, Xing Quan Zhang, Liu San Chen, Jian Ping She, Huan Li e Wei Chen. "Simulation of Laser Shock Wave Propagation and Dispersion in SHPB". Advanced Materials Research 681 (abril de 2013): 105–9. http://dx.doi.org/10.4028/www.scientific.net/amr.681.105.
Texto completo da fonteGong, J. C., L. E. Malvern e D. A. Jenkins. "Dispersion Investigation in the Split Hopkinson Pressure Bar". Journal of Engineering Materials and Technology 112, n.º 3 (1 de julho de 1990): 309–14. http://dx.doi.org/10.1115/1.2903329.
Texto completo da fonte