Siga este link para ver outros tipos de publicações sobre o tema: Molecular organic conductors.

Artigos de revistas sobre o tema "Molecular organic conductors"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Molecular organic conductors".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Donaldson, Laurie. "Excluding molecular dopants improves organic conductors". Materials Today 36 (junho de 2020): 3–4. http://dx.doi.org/10.1016/j.mattod.2020.04.023.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Kadoya, Tomofumi. "Molecular conductors composed from Organic-Transistor Materials". Impact 2020, n.º 4 (13 de outubro de 2020): 38–39. http://dx.doi.org/10.21820/23987073.2020.4.38.

Texto completo da fonte
Resumo:
Assistant Professor Tomofumi Kadoya is part of a team within the Graduate School of Material Science at the University of Hyogo in Japan. He is engaged with a range of different investigations related to conductive organic materials. One of the main focuses of Kadoya's research is organic transistors and organic charge-transfer (CT) complexes. CT complexes achieve conductivity by chemical doping but in organic transistors, conduction carriers are generated by field effect, where an electric field is used to control the flow of current. Among the many goals of the research, Kadoya and his team want to increase the methods and types of organic doping.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

KHODORKOVSKY, V., e J. Y. BECKER. "ChemInform Abstract: Molecular Design of Organic Conductors". ChemInform 26, n.º 28 (17 de agosto de 2010): no. http://dx.doi.org/10.1002/chin.199528328.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Bechgaard, K., e D. Jérome. "Organic Conductors and Organic Superconductivity". Physica Scripta T39 (1 de janeiro de 1991): 37–44. http://dx.doi.org/10.1088/0031-8949/1991/t39/004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

KOBAYASHI, Hayao, Reizo KATO e Akiko KOBAYASHI. "Molecular conductors - From isolated molecule to organic superconductor." Nihon Kessho Gakkaishi 27, n.º 5 (1985): 314–23. http://dx.doi.org/10.5940/jcrsj.27.314.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Hasegawa, Hiroyuki, Susumu Takano, Nobuhiko Miyajima e Tamotsu Inabe. "Molecular Conductors Comprised of Organic Cations and Phthalocyanines". Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 285, n.º 1 (1 de julho de 1996): 113–18. http://dx.doi.org/10.1080/10587259608030787.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Caro, Jaume, Susana Garelik e Albert Figueras. "Anisotropic materials prepared by OCVD: Organic molecular conductors". Chemical Vapor Deposition 2, n.º 6 (novembro de 1996): 251–53. http://dx.doi.org/10.1002/cvde.19960020609.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Cassoux, P., L. Brossard, M. Tokumoto, H. Kobayashi, A. Moradpour, D. Zhu, M. Mizuno e E. Yagubskii. "New results on molecular inorganic and organic conductors". Synthetic Metals 71, n.º 1-3 (abril de 1995): 1845–48. http://dx.doi.org/10.1016/0379-6779(94)03076-i.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Yoshida, Zen-Ichi, e Toyonari Sugimoto. "New Donors for Molecular Organic (Super)Conductors and Ferromagnets". Angewandte Chemie 100, n.º 11 (novembro de 1988): 1633–37. http://dx.doi.org/10.1002/ange.19881001148.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Yoshida, Zen-ichi, e Toyonari Sugimoto. "New Donors for Molecular Organic(Super)Conductors and Ferromagnets". Angewandte Chemie International Edition in English 27, n.º 11 (novembro de 1988): 1573–77. http://dx.doi.org/10.1002/anie.198815731.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Kobayashi, Hayao, Akiko Kobayashi e Hiroyuki Tajima. "Studies on Molecular Conductors: From Organic Semiconductors to Molecular Metals and Superconductors". Chemistry - An Asian Journal 6, n.º 7 (24 de maio de 2011): 1688–704. http://dx.doi.org/10.1002/asia.201100061.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Zorina, L., R. Shibaeva, S. Khasanov, S. Simonov, L. Kushch, E. Yagubskii, C. Meziere, S. Baudron, P. Batail e E. Canadell. "Structures of new molecular conductors based on functionalized organic donors". Acta Crystallographica Section A Foundations of Crystallography 61, a1 (23 de agosto de 2005): c342—c343. http://dx.doi.org/10.1107/s0108767305085417.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Williams, Jack M. "Organic Conductors as Novel “Molecular Rulers” for Advanced Manufacturing Processes". Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 284, n.º 1 (1 de junho de 1996): 449–51. http://dx.doi.org/10.1080/10587259608037947.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Hasegawa, H., S. Takano, N. Miyajima e T. Inabe. "Molecular conductors based on axially substituted phthalocyanines and organic cations". Synthetic Metals 86, n.º 1-3 (fevereiro de 1997): 1895–96. http://dx.doi.org/10.1016/s0379-6779(96)04642-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Underhill, A. E., R. A. Clark, P. I. Clemenson, R. Friend, M. Allen, I. Marsden, A. Kobayashi e H. Kobayashi. "Molecular Conductors Based on Complex Metal Anions". Phosphorus, Sulfur, and Silicon and the Related Elements 67, n.º 1-4 (1 de abril de 1992): 311–25. http://dx.doi.org/10.1080/10426509208045853.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Pouget, Jean-Paul, Pere Alemany e Enric Canadell. "Donor–anion interactions in quarter-filled low-dimensional organic conductors". Materials Horizons 5, n.º 4 (2018): 590–640. http://dx.doi.org/10.1039/c8mh00423d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Blundell, S. J. "Muon studies of organic ferromagnets and conductors". Applied Magnetic Resonance 13, n.º 1-2 (julho de 1997): 155–64. http://dx.doi.org/10.1007/bf03161977.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Yamamoto, Hiroshi. "Development of Organic Electronics and Mott-FETs Based on Molecular Conductors". Molecular Science 4, n.º 1 (2010): A0032. http://dx.doi.org/10.3175/molsci.4.a0032.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Dhakal, Pashupati, Harukazu Yoshino, Jeong-Il Oh, Koichi Kikuchi e Michael J. Naughton. "Multidimensional nature of molecular organic conductors revealed by angular magnetoresistance oscillations". Synthetic Metals 162, n.º 15-16 (setembro de 2012): 1381–85. http://dx.doi.org/10.1016/j.synthmet.2012.05.021.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Clemente-León, Miguel, Eugenio Coronado, Carlos Giménez-Saiz, Carlos J. Gómez-García, Eugenia Martínez-Ferrero, Manuel Almeida e Elsa B. Lopes. "Organic/inorganic molecular conductors based upon perylene and Lindquist-type polyoxometalates". Journal of Materials Chemistry 11, n.º 9 (2001): 2176–80. http://dx.doi.org/10.1039/b103032a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Underhill, Allan E., R. Andrew Clark e K. Sukumar Varma. "Sulphur—Containing Donors and Ligands for Molecular Conductors". Phosphorus, Sulfur, and Silicon and the Related Elements 43, n.º 1-2 (maio de 1989): 111–27. http://dx.doi.org/10.1080/10426508908040281.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Kobayashi, Hayao, Akiko Kobayashi e Hiroyuki Tajima. "ChemInform Abstract: Studies on Molecular Conductors: From Organic Semiconductors to Molecular Metals and Superconductors". ChemInform 42, n.º 38 (25 de agosto de 2011): no. http://dx.doi.org/10.1002/chin.201138260.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Bourbonnais, C., F. Creuzet, P. Wzietek e D. Jerome. "Physical Properties and Concepts for Organic Conductors". Physica Scripta T29 (1 de janeiro de 1989): 51–54. http://dx.doi.org/10.1088/0031-8949/1989/t29/008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Kagoshima, S., R. Kondo, N. Matsushita, S. V. Ovsyannikov, N. A. Shaidarova e V. V. Shchennikov. "Ultra high pressure application to organic conductors". Journal of Low Temperature Physics 142, n.º 3-4 (fevereiro de 2006): 409–12. http://dx.doi.org/10.1007/bf02679532.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Kagoshima, S., R. Kondo, N. Matsushita, S. V. Ovsyannikov, N. A. Shaidarova e V. V. Shchennikov. "Ultra High Pressure Application to Organic Conductors". Journal of Low Temperature Physics 142, n.º 3-4 (20 de janeiro de 2007): 413–16. http://dx.doi.org/10.1007/s10909-006-9126-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Wu, Lipeng, Fan Wu, Qinya Sun, Jiaoyan Shi, Aming Xie, Xufei Zhu e Wei Dong. "A TTF–TCNQ complex: an organic charge-transfer system with extraordinary electromagnetic response behavior". Journal of Materials Chemistry C 9, n.º 9 (2021): 3316–23. http://dx.doi.org/10.1039/d0tc05230b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Romain, Maxime, Denis Tondelier, Olivier Jeannin, Bernard Geffroy, Joëlle Rault-Berthelot e Cyril Poriel. "Properties modulation of organic semi-conductors based on a donor-spiro-acceptor (D-spiro-A) molecular design: new host materials for efficient sky-blue PhOLEDs". Journal of Materials Chemistry C 3, n.º 37 (2015): 9701–14. http://dx.doi.org/10.1039/c5tc01812a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Aizawa, Hirohito, Kazuhiko Kuroki, Harukazu Yoshino, George A. Mousdis, George C. Papavassiliou e Keizo Murata. "Molecular Dependence of the Large Seebeck Effect in τ-Type Organic Conductors". Journal of the Physical Society of Japan 83, n.º 10 (15 de outubro de 2014): 104705. http://dx.doi.org/10.7566/jpsj.83.104705.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Fraxedas, J., J. Caro e A. Figueras. "High vacuum co-evaporator for thin film deposition of molecular organic conductors". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 15, n.º 4 (julho de 1997): 2449–51. http://dx.doi.org/10.1116/1.580907.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Miyahira, Tetsuro, Hiroyuki Hasegawa, Yukihiro Takahashi e Tamotsu Inabe. "Electrochemical Crystallization of Organic Molecular Conductors: Electrode Surface Conditions for Crystal Growth". Crystal Growth & Design 13, n.º 5 (15 de abril de 2013): 1955–60. http://dx.doi.org/10.1021/cg301852k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Figueras, A. "Anisotropic Marterials Prepared by CVD : Organic Molecular Conductors and High Tc Superconductors". Le Journal de Physique IV 05, n.º C5 (junho de 1995): C5–347—C5–356. http://dx.doi.org/10.1051/jphyscol:1995541.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Magonov, Sergei N., Georg Bar, Arkadij Y. Gorenberg, Eduard B. Yagubskii e Hans-Joachim Cantow. "Morphological and molecular processes observed using scanning tunneling microscopy on organic conductors". Advanced Materials 5, n.º 6 (junho de 1993): 453–58. http://dx.doi.org/10.1002/adma.19930050609.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

León, Gladys, e Thierry Giamarchi. "Hall effect in quasi one-dimensional organic conductors". Journal of Low Temperature Physics 142, n.º 3-4 (fevereiro de 2006): 315–18. http://dx.doi.org/10.1007/bf02679514.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

León, Gladys, e Thierry Giamarchi. "Hall Effect in Quasi One-Dimensional Organic Conductors". Journal of Low Temperature Physics 142, n.º 3-4 (24 de janeiro de 2007): 319–22. http://dx.doi.org/10.1007/s10909-006-9180-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Nad, F., e P. Monceau. "Charge ordering and ferroelectric states in organic quasi-one-dimensional conductors". Journal de Physique IV 12, n.º 9 (novembro de 2002): 133–38. http://dx.doi.org/10.1051/jp4:200203379.

Texto completo da fonte
Resumo:
In quasi-one-dimensional (TMTTF)2X conductors [1], where X are the various centro-symmetrical and non-centrosymmetrical anions, by study of temperature dependences of conductance G and dielectric permittivity $\varepsilon '$ at low frequencies we have found anomalies which are characteristic for phase transitions: an abrupt bend on the G(l/T) dependences with thermally activated decrease of G and sharp maxima of the E' near the charge ordering temperature corresponding to the E' divergence according to the Curie law. A number of evidences have been obtained in favor that driving force of these phase transitions is the long range correlated electron interaction yielding the charge ordering along the molecular chains (a lattice version of the Wigner crystal). The anion chains, electrically balanced with molecular chains, are of very importance in the formation and the stabilization of these new phase states. It appears that the form of charge symmetry of the anions determines to a great extent the types of the occurring transitions and the developing ground states.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Figueras, A., S. Garelik, J. Caro, J. Cifré, J. Veciana, C. Rovira, E. Ribera, E. Canadell, A. Seffar e J. Fontcuberta. "Preparation and characterization of conducting thin films of molecular organic conductors (TTF-TCNQ)". Journal of Crystal Growth 166, n.º 1-4 (setembro de 1996): 798–803. http://dx.doi.org/10.1016/0022-0248(96)00075-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Zhu, Haijin, Fangfang Chen, Liyu Jin, Luke A. O'Dell e Maria Forsyth. "Insight into Local Structure and Molecular Dynamics in Organic Solid-State Ionic Conductors". ChemPhysChem 15, n.º 17 (18 de setembro de 2014): 3720–24. http://dx.doi.org/10.1002/cphc.201402487.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Lunardi, G., e C. Pecile. "N,N’‐dicyanoquinonediimines as a molecular constituent of organic conductors: Vibrational behavior and electron–molecular vibration coupling". Journal of Chemical Physics 95, n.º 9 (novembro de 1991): 6911–23. http://dx.doi.org/10.1063/1.461503.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Otsuka, Akihiro, Gunzi Saito, Kazuyo Ohfuchi e Michiko Konno. "C1TET-TTF and its Related Compounds as Single Component Molecular Conductors". Phosphorus, Sulfur, and Silicon and the Related Elements 67, n.º 1-4 (1 de abril de 1992): 333–38. http://dx.doi.org/10.1080/10426509208045855.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Tokumoto, Madoka, Hisashi Tanaka, Takeo Otsuka, Hayao Kobayashi e Akiko Kobayashi. "Observation of spin-flop transition in antiferromagnetic organic molecular conductors using AFM micro-cantilever". Polyhedron 24, n.º 16-17 (novembro de 2005): 2793–95. http://dx.doi.org/10.1016/j.poly.2005.03.171.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Mukherjee, V. "Molecular modeling, spectroscopic signature and NBO analysis of some building blocks of organic conductors". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 132 (novembro de 2014): 102–9. http://dx.doi.org/10.1016/j.saa.2014.04.104.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Garelik, S., J. Vidal Gancedo, A. Figueras, J. Caro, J. Veciana, C. Rovira, E. Ribera, E. Canadell, A. Seffar e J. Fontcuberta. "Conducting thin films of molecular organic conductors, tetrathiafulvalene-7,7,8,8-tetracyano-p-quinodimethane (TTF-TCNQ)". Synthetic Metals 76, n.º 1-3 (janeiro de 1996): 309–12. http://dx.doi.org/10.1016/0379-6779(95)03478-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Veciana, Jaume, e Hiizu Iwamura. "Organic Magnets". MRS Bulletin 25, n.º 11 (novembro de 2000): 41–51. http://dx.doi.org/10.1557/mrs2000.223.

Texto completo da fonte
Resumo:
The notion of organic molecular materials showing metallic properties, such as electric conductivity or ferromagnetism, started several decades ago as a mere dream of some members of the chemical community. The goal was to create an assembly of organic molecules or macromolecules containing only light elements (C, H, N, O, S, etc.) and yet possessing the electron/hole mobility or spin alignment that is inherent in typical metals or their oxides and different from the isolated molecular materials. Organic molecular conductors initially were developed during the 1960s, but the first examples of organic molecular magnets took several more decades to be discovered, owing to the more subtle and complex structural and electronic aspects of these materials. The flurry of activity in this field can be traced to the widely held belief that even the most sophisticated properties can be rationally designed by a systematic modification of organic molecular structures. This motivation was further fueled by increased synthetic capabilities, especially for obtaining large organic molecules with suitable structures and topologies, and also by the spectacular progress of supramolecular chemistry for materials development witnessed in recent years. Also noteworthy is the pioneering work performed in the 1960s by several physical organic chemists who unraveled different ways of aligning spins within open-shell molecules (i.e., triplet diradicals, carbenes, etc.), working against nature's tendency to align them in an antiparallel manner. Magnetic interactions between unpaired electrons, located on the singly occupied molecular orbitals (SOMOs) of di- and polyradicals, or between the adjacent open-shell molecules in crystals, are a crucial issue in this evolving field. Thus, depending upon the symmetry, degeneracy,and topological characteristics of SOMOs and also on the mode of arrangement of the molecules in a crystal, the resulting interaction can align the neighboring spins parallel or antiparallel (see the introductory article by Miller and Epstein in this issue of MRS Bulletin).
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Grätzel, Michael. "Molecular photovoltaics that mimic photosynthesis". Pure and Applied Chemistry 73, n.º 3 (1 de janeiro de 2001): 459–67. http://dx.doi.org/10.1351/pac200173030459.

Texto completo da fonte
Resumo:
Learning from the concepts used by green plants, we have developed a photovoltaic cell based on molecular light absorbers and mesoporous electrodes. The sensitized nanocrystalline injection solar cell employs organic dyes or transition-metal complexes for spectral sensitization of oxide semiconductors, such as TiO2, ZnO, SnO2, and Nb2O5. Mesoporous films of these materials are contacted with redox electrolytes, amorphous organic hole conductors, or conducting polymers, as well as inorganic semiconductors. Light harvesting occurs efficiently over the whole visible and near-IR range due to the very large internal surface area of the films. Judicious molecular engineering allows the photoinduced charge separation to occur quantitatively within femtoseconds. The certified overall power conversion efficiency of the new solar cell for standard air mass 1.5 solar radiation stands presently between 10 and 11. The lecture will highlight recent progress in the development of solar cells for practical use. Advancement in the understanding of the factors that govern photovoltaic performance, as well as improvement of cell components to increase further its conversion efficiency will be discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Jérome, D., F. Creuzet e C. Bourbonnais. "A survey of the physics of organic conductors and superconductors". Physica Scripta T27 (1 de janeiro de 1989): 130–35. http://dx.doi.org/10.1088/0031-8949/1989/t27/023.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Deng, Ming Zhang, Bing Yan Zhang, De Kang Huang, Zhao Chen, Bing Bing Chen, Shao Hui Li, Yan Shen e Ming Kui Wang. "Modification on ITO to Fabricate Low Work Function Electrode in Inverted Organic Photovoltaics". Advanced Materials Research 1090 (fevereiro de 2015): 211–14. http://dx.doi.org/10.4028/www.scientific.net/amr.1090.211.

Texto completo da fonte
Resumo:
The PCE has a great relationship with the work function of conductors in organic and printed electronics devices. And organic photovoltaics require an electrode with a work function (WF) that is low enough to either facilitate the transport of electrons in and out of various optoelectronic devices or collect electrons from the lowest unoccupied molecular orbital (LUMO) of a given organic semiconductor. In inverted organic photovoltaics, the ITO is normally used as cathode to collect electrons .By using PDDA deposition, the surface work function of ITO can be decreased by 0.3 eV, which is able to improve the electrons transport and the PCE in OPV, as it has been proved that the surface electronic potential of ITO is very sensitive to the presence of self-assembled molecular layers.
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Watanabe, Kazuyoshi, Naoki Miura, Hiroaki Taguchi, Takeshi Komatsu, Hideyuki Nosaka, Toshihiro Okamoto, Yu Yamashita, Shun Watanabe e Jun Takeya. "Improvement of contact resistance at carbon electrode/organic semiconductor interfaces through chemical doping". Applied Physics Express 15, n.º 10 (1 de outubro de 2022): 101005. http://dx.doi.org/10.35848/1882-0786/ac92c0.

Texto completo da fonte
Resumo:
Abstract Organic thin-film transistors (OTFTs) are promising building blocks for low cost, low-environmental load, and lightweight electronic devices. Carbon-based conductors can be potentially used as TFT electrodes. However, a concern is that the carbon electrode is unsuitable for carrier injection into organic semiconductors due to the difficulty in precise work function control. Herein, we have demonstrated that molecular dopants in carbon networks can improve carrier injection with a reasonably low contact resistance of 510 Ω·cm, which constitutes a key step in the realization of noble-metal-free electronic devices.
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Kondo, R., M. Higa e S. Kagoshima. "Superconducting and charge ordering phases of two-dimensional organic conductors". Journal of Low Temperature Physics 142, n.º 3-4 (fevereiro de 2006): 535–38. http://dx.doi.org/10.1007/bf02679563.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Kondo, R., M. Higa e S. Kagoshima. "Superconducting and Charge Ordering Phases of Two-Dimensional Organic Conductors". Journal of Low Temperature Physics 142, n.º 3-4 (20 de janeiro de 2007): 539–42. http://dx.doi.org/10.1007/s10909-006-9161-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Zahn, Dirk. "Molecular dynamics simulation of ionic conductors: perspectives and limitations". Journal of Molecular Modeling 17, n.º 7 (31 de outubro de 2010): 1531–35. http://dx.doi.org/10.1007/s00894-010-0877-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia