Literatura científica selecionada sobre o tema "Nitrogen budgets"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Nitrogen budgets".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Nitrogen budgets"
Galloway, J. N., e H. Rodhe. "Regional atmospheric budgets of S and N fluxes: how well can they be quantified?" Proceedings of the Royal Society of Edinburgh. Section B. Biological Sciences 97 (1990): 61–80. http://dx.doi.org/10.1017/s0269727000005297.
Texto completo da fonteLöhmus, Krista, Valdo Kuusemets, Mari Ivask, Sille Teiter, Jürgen Augustin e Ülo Mander. "Budgets of nitrogen fluxes in riparian grey alder forests." River Systems 13, n.º 3-4 (1 de janeiro de 2002): 321–32. http://dx.doi.org/10.1127/lr/13/2002/321.
Texto completo da fonteCarey, Anne E., W. Berry Lyons, Jean-Claude Bonzongo e John C. Lehrter. "Nitrogen budget in the Upper Mississippi River watershed". Environmental and Engineering Geoscience 7, n.º 3 (1 de agosto de 2001): 251–65. http://dx.doi.org/10.2113/gseegeosci.7.3.251.
Texto completo da fontePrasad, Rishi, e George Hochmuth. "Understanding Nitrogen Transformations and Cycling for Sweet Corn Production in Sandy Soils". EDIS 2015, n.º 8 (5 de novembro de 2015): 4. http://dx.doi.org/10.32473/edis-ss643-2015.
Texto completo da fonteGalicka, Wanda, e Tadeusz Penczak. "Total nitrogen and phosphorus budgets in the lowland Sulejow Reservoir". Archiv für Hydrobiologie 117, n.º 2 (20 de dezembro de 1989): 177–90. http://dx.doi.org/10.1127/archiv-hydrobiol/117/1989/177.
Texto completo da fonteReimer, Marie, Kurt Möller e Tobias Edward Hartmann. "Meta-analysis of nutrient budgets in organic farms across Europe". Organic Agriculture 10, S1 (26 de maio de 2020): 65–77. http://dx.doi.org/10.1007/s13165-020-00300-8.
Texto completo da fonteKlages, Susanne, Claudia Heidecke, Bernhard Osterburg, John Bailey, Irina Calciu, Clare Casey, Tommy Dalgaard et al. "Nitrogen Surplus—A Unified Indicator for Water Pollution in Europe?" Water 12, n.º 4 (22 de abril de 2020): 1197. http://dx.doi.org/10.3390/w12041197.
Texto completo da fonteCollos, Y. "Nitrogen budgets and dissolved organic matter cycling". Marine Ecology Progress Series 90 (1992): 201–6. http://dx.doi.org/10.3354/meps090201.
Texto completo da fonteMatsumura, Tsuyoshi, Takashi Ishimaru e Tetsuo Yanagi. "Nitrogen and Phosphorus Budgets in Tokyo Bay." Oceanography in Japan 11, n.º 6 (2002): 613–30. http://dx.doi.org/10.5928/kaiyou.11.613.
Texto completo da fonteJohnson, Dale W., e John Turner. "Nitrogen budgets of forest ecosystems: A review". Forest Ecology and Management 318 (abril de 2014): 370–79. http://dx.doi.org/10.1016/j.foreco.2013.08.028.
Texto completo da fonteTeses / dissertações sobre o assunto "Nitrogen budgets"
Watson, Christine A. "Nitrogen budgets in pluricompartmental systems". Thesis, University of Aberdeen, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296512.
Texto completo da fonteEriksson, Hägg Hanna. "Nitrogen land-sea fluxes in the Baltic Sea catchment : Empirical relationships and budgets". Doctoral thesis, Stockholms universitet, Institutionen för tillämpad miljövetenskap (ITM), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-32493.
Texto completo da fonteAt the time of doctoral dissertation the following publications were unpublished and had a status as follows: Paper 2: Manuscript. Paper 4: Manuscript
Halpop, John W. "Nitrogen and Energy Budgets of Production Ewes on Summer Range in Southwestern Utah". DigitalCommons@USU, 1988. https://digitalcommons.usu.edu/etd/4086.
Texto completo da fonteJames, Andrew Gordon. "The feeding ecology of and carbon and nitrogen budgets for Engraulis capensis in the southern Benguela ecosystem". Doctoral thesis, University of Cape Town, 1988. http://hdl.handle.net/11427/8409.
Texto completo da fonteThe two main schools of thought regarding the diets of intermediate microphagous clupeids are: A) that they are herbivorous and B) that they are omnivorous, but consume mainly zooplankton. The former view has been employed to explain their abundance in upwelling areas, since their purported ability to efficiently utilise the primary producers shortens the pelagic food chain to 1 or 2 links. The literature concerning the trophic ecology of some commercially important clupeids is reviewed and it is concluded that few are true phytophagists. Most are omnivorous and derive the bulk of their energy from zooplankton. Results indicating that these fish are herbivorous are largely due to inadequate sampling strategies and analytical techniques. The results of field work show that Engraulis capensis feeds selectively upon meso- and macro-zooplankton. Laboratory experiments supported these findings. Prey are selected on the basis of size and particulate feeding is the dominant mode of intake when the' fish are presented with a mixed size assemblage of prey. Engraulis capensis cannot filter feed on particles less than 0.200mm maximum dimension, and there is a threshold size of approximately 0.700mm when feeding behaviour switches from filter to particulate feeding. Particulate feeding produced faster clearance rates than filtering, and the Cape anchovy feeds at maximum efficiency over most of their prey size spectrum.
van, der Lingen Carl David. "The Feeding ecology of, and carbon and nitrogen budgets for, sardine sardinops sagax in the Southern Benguela upwelling ecosystem". Doctoral thesis, University of Cape Town, 1999. http://hdl.handle.net/11427/17510.
Texto completo da fonteCombined laboratory and field studies were employed to examine the feeding ecology of sardine Sardinops sagax in order to evaluate conflicting hypotheses regarding the trophic position of clupeoids in upwelling ecosystems, and to compare the trophodynamics of sardine with those of the co-occurring anchovy Engraulis capensis. Carbon and nitrogen budget models constructed using data from these studies were used to quantify the effect of particular food environments upon sardine growth. Sardinops sagax is primarily a filter-feeder, with food particles <1230μm total length eliciting a filtering response while larger particles elicit particulate-feeding at low concentrations and filter-feeding at high concentrations. This species is able to retain cells as small as 13μm, feeds at near-maximum efficiency when filterfeeding, and displays size-selectivity during particulate-feeding. Significant linear relationships between respiration rate and swimming speed obtained for sardine demonstrate that filter-feeding is the most energetically cheap feeding mode. Although omnivorous, sardine absorbs carbon and nitrogen more efficiently from zooplankton than from phytoplankton. Gastric evacuation follows an exponential pattern in sardine, and is influenced by food type; phytoplankton is evacuated faster than zooplankton. Feeding periodicity in sardine is size dependent; small fish show a feeding peak at, or around, sunset whereas larger fish appear to feed continuously. Estimates of daily ration range between 0.99 to 7.58% wet body mass.d-¹, depending on fish size and food type. Sardine stomach contents are numerically dominated by small particles, principally dinoflagellate phytoplankton, but the majority of the sardine's dietary carbon is derived from zooplankton, principally small calanoid and cyclopoid copepods. The budget models indicate that sardine is capable of positive growth under most of the trophic conditions it is likely to encounter in the southern Benguela upwelling system. The classical hypothesis that the high abundance of clupeoids in upwelling ecosystems results from their phytophagy is rejected; like anchovy, sardine are primarily zoophagous. However, these two species are trophodynamically distinct and show resource partitioning on the basis of prey size; sardine consume small zooplankton whilst anchovy consume large zooplankton. This difference is likely to contribute to regime shifts observed between these two species.
Randall, Benjamin. "Characterisation and quantification of the fluxes of particulate and dissolved nitrogen in the unicellular diazotroph crocosphaera watsonii : towards a closed nitrogen budget". Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS685.
Texto completo da fonteDiazotrophy exists as a source of fixed N in the ocean, affecting processes like the marine food web. Important fluxes of the dissolved N phase, which inform the overall N budgets of individual diazotrophs, are poorly understood. This is especially true of recently discovered diazotrophs which may not function under pre-established paradigms. One such diazotroph is Crocosphaera watsonii, which is found widespread throughout sub-tropical oceans. Here we characterise N fluxes consequent to diazotrophy for Crocosphaera, including fluxes of NO3-, NH4+, and dissolved organic N (DON). We also aim to use our results to assess the accuracy of commonly used biological N2 fixation assays. We first assessed the use of NO3- by Crocosphaera. To do this, batch cultures of Crocosphaera were grown long term with NO3-, measuring uptake of NO3- uptake its effect on diazotrophy, culture growth and other important physiological parameters. We found little uptake with no effect on the assessed parameters, including diazotrophy. We next focussed on flux of DON and NH4+ in continuous cultures regulated for conditions such as temperature, light, and pH. We targeted light availability as an important parameter. Between culture conditions of sub-saturating (SSL) and saturating light (SL), we found an increase in N acquisition, C acquisition and cell growth rate in the SL condition. Furthermore, we found an uptake of DON over a 24h period, with greater uptake in the SSL scenario (42% v.s. 7%). There was greater flux of NH4+ into the medium in the SSL. Using an isotopic approach, we found 2.5-3.5% of recently fixed N was exuded 24h. Our assessment of the accuracy of methodology found that 15N2 incubations underestimated N2 fixation while the acetylene reduction assay overestimated. Overall, 15N2 incubations were more reliable when factoring in fluxes of dissolved N. Our findings represent new perspectives into the importance of fluxes of dissolved N to N budgets of Crocosphaera watsonii
Bristow, Corben Emerson. "Experimental freshwater cage aquaculture: Short term effects on carbon, nitrogen and phosphorus budgets and the metabolism of a boreal shield lake". Thesis, University of Ottawa (Canada), 2006. http://hdl.handle.net/10393/27114.
Texto completo da fonteMichori, Peter K. "Nitrogen budget under coffee". Thesis, University of Reading, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333405.
Texto completo da fonteLernbecher, Vincent. "Swedish Nitrogen Flows : A national budget of anthropogenically induced reactive nitrogen". Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289176.
Texto completo da fonteKvävgas i form av N2 finns i överflöd i jordens atmosfär. Cirka 78% av luften är i själva verket N2. För att levande organismer ska kunna använda det atmosfäriska kvävet måste den först brytas ned och bindas till antingen väte, kol eller syre. I sin reaktiva form fungerar elementet som en grundläggande byggsten för alla levande varelser. Den naturliga processen som förvandlar oanvändbart atmosfäriskt kväve till dess reaktiva former kallas kvävefixering och utförs av bakterier. I ekosystemet avgör därmed tillgängligheten av reaktivt kväve vegetationens tillväxt och är därmed en begränsande faktor för jordbruket. Denna begränsning upphörde med uppfinningen av industriell kvävefixering i form av Haber-Bosch processen där ammoniak utvinns ur luften. Sedan dess har miljontals ton av reaktivt kväve införts till den naturliga kvävecykeln och orsakat störningar med allvarliga konsekvenser. I Sverige började arbetet med att reducera överskottet av reaktivt kväve på allvar under 1980-talet då näringsinnehållet i Östersjön redan hade överskridit hållbara nivåer. Sedan dess har ny lagstiftning som behandlar frågan införts både på nationell nivå och på EU- nivå. Insatserna har påverkat minskningen av kväveöverskottet, men många belastningsgränser överskrids fortfarande. För att samordna strategier och lagstiftning kring den komplexa kvävecykeln och ytterligare begränsa miljöbelastningen krävs en mer integrerad, holistisk strategi och ett gemensamt ramverk. Denna studie skapades med detta i åtanke och med målet att öka medvetenheten om kvävets belastning på miljön. I studien kvantifierades mänskligt inducerade källor och mekanismer associerade med kväve och illustrerades i flera diagram konstruerade med en materialflödesanalys (MFA) metod. Det svenska samhället är indelat i fyra sektorer: jordbruk, industri, konsumtion och avfallshantering. De resulterande kväveflödena används sedan för att lyfta fram intressanta områden och skapa en översiktsbild. Resultaten visar betydande flöden som huvudsakligen härrör från livsmedelssystemet, med början i jordbruksanvändning av mineral- och organisk gödselmedel. Utsläpp av ammoniak till luft från djurhållning samt läckage av kväve till vattendrag utgör de största förlusterna i jordbrukssektorn. Den drivande kraften bakom det stora inflödet av gödselmedel och orsaken till jordbruksförlusterna är först och främst hushållens konsumtionsmönster. Utsläpp av kväveoxider från trafik och industriprocesser utgör även en stor del den totala kvävebelastningen. Återvinningsgraden av näringsämnen som slutligen hamnar i avfallssektorn är relativt låg och majoriteten av kvävet denitrifieras i reningsverk. Slutsatsen är att det nuvarande tillståndet för antropogent kväveflöde i Sverige är linjärt och att nytt kväve kontinuerligt måste tillföras till systemet.
Batson, Jacqulyn A. "Denitrification and a Nitrogen Budget of Created Riparian Wetlands". The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1284968767.
Texto completo da fonteLivros sobre o assunto "Nitrogen budgets"
United States. Environmental Protection Agency. Office of Air and Radiation., ed. NOx budget trading program: 2005 program compliance and environmental results. [Washington, D.C.]: United States Environmental Protection Agency, Office of Air and Radiation, 2005.
Encontre o texto completo da fonteUnited States. Environmental Protection Agency. Office of Atmospheric Programs, ed. Evaluating the ozone control programs in the eastern United States: Focus on the NOx Budget Trading Program, 2004. Washington, DC: U.S. Environmental Protection Agency, Office of Air and Radiation, Office of Air Quality Planning and Standards, Office of Atmospheric Programs, 2005.
Encontre o texto completo da fonteEllen, Baldridge, United States. Environmental Protection Agency., United States. Environmental Protection Agency. Office of Air and Radiation., United States. Environmental Protection Agency. Office of Air Quality Planning and Standards. e United States. Environmental Protection Agency. Office of Atmospheric Programs., eds. Evaluating ozone control programs in the eastern United States: Focus on the NOX budget trading program, 2004. Washington, D.C: United States Environmental Protection Agency, 2004.
Encontre o texto completo da fonteMoldan, Filip, Sara Jutterström, Johanna Stadmark, Anu Akujärvi, Martin Forsius, Maria Holmberg, Kari Austnes, Heleen de Wit e Jesper Bak. Policy Brief: Nitrogen budgets and the link to carbon sequestration in the Nordic forests. Nordic Council of Ministers, 2021. http://dx.doi.org/10.6027/temanord2021-554.
Texto completo da fonteDerwent, R. G. The Influence of Physical and Chemical Processes on the Fluxes and Budgets of Atmospheric Nitrogen Compounds. AEA Technology Plc, 1988.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Nitrogen budgets"
Legg, J. O., e J. J. Meisinger. "Soil Nitrogen Budgets". In Nitrogen in Agricultural Soils, 503–66. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2015. http://dx.doi.org/10.2134/agronmonogr22.c14.
Texto completo da fonteMeisinger, J. J., F. J. Calderón e D. S. Jenkinson. "Soil Nitrogen Budgets". In Nitrogen in Agricultural Systems, 505–62. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2015. http://dx.doi.org/10.2134/agronmonogr49.c13.
Texto completo da fonteGu, Baojing, e Xiuming Zhang. "Reactive Nitrogen Budgets in China". In Atmospheric Reactive Nitrogen in China, 87–109. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8514-8_5.
Texto completo da fonteToetz, Dale W. "Nitrogen Budgets of Great Plains Impoundments". In Man-Made Lakes: Their Problems and Environmental Effects, 567–71. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm017p0567.
Texto completo da fonteMeisinger, J. J., e G. W. Randall. "Estimating Nitrogen Budgets for Soil-Crop Systems". In Managing Nitrogen for Groundwater Quality and Farm Profitability, 85–124. Madison, WI, USA: Soil Science Society of America, 2015. http://dx.doi.org/10.2136/1991.managingnitrogen.c5.
Texto completo da fonteHolland, Elisabeth A., Frank J. Dentener, Bobby H. Braswell e James M. Sulzman. "Contemporary and pre-industrial global reactive nitrogen budgets". In New Perspectives on Nitrogen Cycling in the Temperate and Tropical Americas, 7–43. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4645-6_2.
Texto completo da fonteRaven, John A., Linda L. Handley e Mitchell Andrews. "Optimizing Carbon-Nitrogen Budgets: Perspectives for Crop Improvement". In Advances in Photosynthesis and Respiration, 265–74. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/0-306-48138-3_16.
Texto completo da fonteJohnson, D. W., R. B. Susfalk, T. G. Caldwell, J. D. Murphy, W. W. Miller e R. F. Walker. "Fire Effects on Carbon And Nitrogen Budgets in Forests". In Biogeochemical Investigations of Terrestrial, Freshwater, and Wetland Ecosystems across the Globe, 263–75. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-007-0952-2_19.
Texto completo da fonteXing, G. X., e Z. L. Zhu. "Regional nitrogen budgets for China and its major watersheds". In The Nitrogen Cycle at Regional to Global Scales, 405–27. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-3405-9_13.
Texto completo da fonteMikkelsen, D. S. "Nitrogen budgets in flooded soils used for rice production". In Plant and Soil Interfaces and Interactions, 71–97. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3627-0_6.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Nitrogen budgets"
Grewal, Damanveer, Rajdeep Dasgupta e James Eguchi. "The Effect of Differentiation via Internal Versus External Magma Oceans on the Carbon and Nitrogen Budgets of Rocky Planets". In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.880.
Texto completo da fonteHan, Chengwei, e Shiguo Xu. "The Nitrogen Budget of DRW in the Northeastern China". In World Environmental and Water Resources Congress 2009. Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41036(342)258.
Texto completo da fonteHongmin Dong, Zhongkai Zhou, Zhiping Zhu, Hongwei Xin e Yongxing Chen. "Carbon and Nitrogen Budget of Commercial Cage-Grown Broilers". In 2011 Louisville, Kentucky, August 7 - August 10, 2011. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2011. http://dx.doi.org/10.13031/2013.37297.
Texto completo da fonteTabeta, Shigeru, e Haruki Yoshimoto. "Investigation of Carbon Budget Around Artificial Upwelling Generator by a Coupled Physical-Biological Model". In ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2007. http://dx.doi.org/10.1115/omae2007-29653.
Texto completo da fonteLarsen, Jack C., e William P. Chu. "The Sensitivity of the SAGE II .94 μm Band Water Vapor Retrievals to Uncertainties in Absorption Line Parameters". In Optical Remote Sensing. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/ors.1985.wc23.
Texto completo da fonteLUCOVSKY, Gerald, David R. LEE, Sunil V. HATTANGADY, Hiro NIIMI, Chris PARKER e John R. HAUSER. "Low-Thermal-Budget Process-Controlled Monolayer Level Incorporation of Nitrogen into Ultra-Thin Gate Dielectric Structures: Applications to MOS Devices". In 1995 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1995. http://dx.doi.org/10.7567/ssdm.1995.s-i-2-4.
Texto completo da fonteBijnen, F. G. C., F. J. M. Harren, J. Reuss e J. H. P. Hackstein. "Gas detector measures parts per trillion: periodic CH4 and H2O release from a single cockroach". In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/cleo_europe.1994.cwi1.
Texto completo da fonteLangford, Andrew O., e Michael H. Proffitt. "Differential Absorption Lidar Measurements of Tropospheric Ozone". In Laser Applications to Chemical Analysis. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/laca.1994.wc.3.
Texto completo da fonteDUBRA, Vytautas. "SOME PECULIARITIES OF SPATIAL DISTRIBUTION OF LAND-BASED INORGANIC NUTRIENTS IN THE COASTAL PART OF THE BALTIC SEA". In Rural Development 2015. Aleksandras Stulginskis University, 2015. http://dx.doi.org/10.15544/rd.2015.070.
Texto completo da fonteKomai, Yukio, Yukio Komai, Mana Sakata, Mana Sakata, Masaki Nakajima, Masaki Nakajima, Sae Tanaka e Sae Tanaka. "RELEASE OF NUTRIENTS FROM BOTTOM SEDIMENTS IN OSAKA BAY, JAPAN IN 2015". In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.31519/conferencearticle_5b1b937eec5797.84530079.
Texto completo da fonteRelatórios de organizações sobre o assunto "Nitrogen budgets"
Bloom, Arnold. Final Report: Plant Nitrogen Budgets Under Elevated Carbon Dioxide Levels: Regulations by Nitrogen Absorption and Assimiliation, September 1, 1995 - August 31, 1999. Office of Scientific and Technical Information (OSTI), agosto de 1999. http://dx.doi.org/10.2172/765144.
Texto completo da fonteBassiriRad, H., e V. Gutschick. Plant nitrogen budget under elevated carbon dioxide level: Regulation by nitrogen absorption and assimilation. Progress report, October 1, 1995--July 31, 1996. Office of Scientific and Technical Information (OSTI), setembro de 1998. http://dx.doi.org/10.2172/656508.
Texto completo da fonteBassiriRad, Hormoz, e Vincent Gutschick. Closeout technical report for DOE award number DE-FG02-97ER62332 [Nitrogen budget under elevated CO{sub 2} levels: regulation by absorption and assimilation]. Office of Scientific and Technical Information (OSTI), outubro de 2001. http://dx.doi.org/10.2172/808011.
Texto completo da fonteWater budget for and nitrogen loads to Northeast Creek, Bar Harbor, Maine. US Geological Survey, 2002. http://dx.doi.org/10.3133/wri024000.
Texto completo da fonte