Literatura científica selecionada sobre o tema "Polar vinyl monomer"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Polar vinyl monomer".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Polar vinyl monomer"

1

Zhao, Wei, Zhihao Liu, Yanan Zhao, Yi Luo e Shengbao He. "Multivariate Linear Regression Models to Predict Monomer Poisoning Effect in Ethylene/Polar Monomer Copolymerization Catalyzed by Late Transition Metals". Inorganics 10, n.º 2 (21 de fevereiro de 2022): 26. http://dx.doi.org/10.3390/inorganics10020026.

Texto completo da fonte
Resumo:
This study combined density functional theory (DFT) calculations and multivariate linear regression (MLR) to analyze the monomer poisoning effect in ethylene/polar monomer copolymerization catalyzed by the Brookhart-type catalysts. The calculation results showed that the poisoning effect of polar monomers with relatively electron-deficient functional groups is weaker, such as ethers, and halogens. On the contrary, polar monomers with electron-rich functional groups (carbonyl, carboxyl, and acyl groups) exert a stronger poisoning effect. In addition, three descriptors that significantly affect the poisoning effect have been proposed on the basis of the multiple linear regression model, viz., the chemical shift of the vinyl carbon atom and heteroatom of polar monomer as well as the metal-X distance in the σ-coordination structure. It is expected that these models could guide the development of efficient catalytic copolymerization system in this field.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Chen, Qian-Bao, Tian-You Zeng, Lei Xia, Ze Zhang, Chun-Yan Hong, Gang Zou e Ye-Zi You. "A RAFT/MADIX method finely regulating the copolymerization of ethylene and polar vinyl monomers under mild conditions". Chemical Communications 53, n.º 78 (2017): 10780–83. http://dx.doi.org/10.1039/c7cc06341e.

Texto completo da fonte
Resumo:
A RAFT/MADIX method can not only copolymerize ethylene with a diverse range of functionally polar monomers, but can also easily tune the polar composition and the polar monomer distribution along the produced copolymer chains.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Zhu, Yuqiong, Sihan Li, Huaqing Liang, Xiuli Xie e Fangming Zhu. "Titanium complex with an [OSSO]-type bis(phenolate) ligand for ethylene copolymerization with vinyl polar monomer based on group protection". RSC Advances 9, n.º 46 (2019): 26582–87. http://dx.doi.org/10.1039/c9ra06271h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Srebro, Monika, Mariusz Mitoraj e Artur Michalak. "Binding of polar monomers in the complexes with organometallic ethylene polymerization catalysts — Natural orbitals for chemical valence and energy decomposition analysis". Canadian Journal of Chemistry 87, n.º 7 (julho de 2009): 1039–54. http://dx.doi.org/10.1139/v09-072.

Texto completo da fonte
Resumo:
The binding mode of polar monomers in complexes with late-transition-metal catalysts for ethylene polymerization was studied by density functional theory (DFT) calculations. The Ziegler–Rauk energy decomposition scheme was used to characterize the geometry distortion and steric and orbital-interaction terms in the bonding energy, while Natural Orbitals for Chemical Valence (NOCV) were applied to describe the donation and back-bonding components of the bond between the monomer and the catalyst. The NOCV analysis allowed for comparison of the donor–acceptor properties of different monomers in the σ- and π-complexes. The complexes with the model, cationic Ni– or Pd–diimine catalysts, N^N–Ni(H)+ and N^N–Pd(H)+, and the neutral Ni–anilinotropone system, N^O–Ni(H), were investigated. The monomers studied included: simple olefins (Et and Pr); examples of oxygen- and nitrogen-containing polar monomers (methyl acrylate (MA), vinyl acetate (VAc), their fluorinated derivatives (FMA, FVAc), vinyl ether (VE), acrylonitrile (AN), and β-butenoic nitrile (BN); vinyl and allyl amines (VAm, PrAm); and a tertiary dimethyl vinyl amine (MVAm). The results demonstrate that the metal-based fragment has a significant influence on the relative stability of the σ- and π-complexes; the π-binding mode increases in the following order: N^N–Ni(H)+ < N^N–Pd(H)+ < N^O–Ni(H). The results of the Ziegler–Rauk bond-energy decomposition indicate that for some monomers (MA, FMA, VAc, AN, VAm, MVAm) the preference of the coordination mode has a steric (electrostatic and Pauli) origin. For other monomers (VE, FVAc, BN, PrAm) the changes in the orbital-interaction terms are important as well. The results of the NOCV analysis indicate that for both, σ- and π-coordination modes there exist components describing σ-donation and π-back-bonding. The sequences of σ-donor and π-acceptor properties of monomers in the π-complexes as well as σ-complexes are similar for the considered catalysts.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Klinpituksa, Pairote, Nurhayatee Chekmae e Salinee Borthoh. "2-(Methacryloyloxyethyl) Trimethyl Ammonium Chloride Grafted onto Natural Rubber in Latex State". Advanced Materials Research 1105 (maio de 2015): 293–98. http://dx.doi.org/10.4028/www.scientific.net/amr.1105.293.

Texto completo da fonte
Resumo:
The grafting of polar vinyl monomers onto natural rubber is usually investigated to modify specific properties of natural rubber. The aim of this research was to graft copolymerize 2-(methacryloyloxyethyl) trimethyl ammonium chloride (MAETAC) onto natural rubber (NR), using cumene hydroperoxide (CHP) and tetraethylene pentamine (TEPA) as a redox initiator system. The effects of the initiator system, the monomer, and the reaction temperature and time on grafting were investigated. The grafted product was characterized by FTIR spectrophotometry. The grafting tendency was determined by using the relative absorbance ratio of A1725/A842, which compares the C=O stretching in MAETAC with the =CH out-of-plane bending in natural rubber moieties. Near optimal grafting was obtained with CHP and TEPA both at 0.15 phr, monomer at 20 phr, reacted at 65°C for 120 minutes. The grafting percentage of NR-g-MAETAC was 6.10 as determined by ATR-FTIR.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Castro-Landinez, Juan Felipe, Felipe Salcedo-Galan e Jorge Alberto Medina-Perilla. "Polypropylene/Ethylene—And Polar—Monomer-Based Copolymers/Montmorillonite Nanocomposites: Morphology, Mechanical Properties, and Oxygen Permeability". Polymers 13, n.º 5 (26 de fevereiro de 2021): 705. http://dx.doi.org/10.3390/polym13050705.

Texto completo da fonte
Resumo:
This research reports the influence of polar monomer contents in ethylene vinyl acetate copolymer (EVA) and ethylene vinyl alcohol copolymer (EVOH) on the morphology, mechanical and barrier properties of polypropylene/ethylene copolymer (PP) reinforced with organically modified montmorillonite (MMT). PP/EVA and PP/EVOH (75/25 wt %) blends were reinforced with 3 wt % MMT in an internal mixer system. Samples were compression-molded into films of 300μ μm. The structural characterization was made using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), the mechanical properties were obtained by tension tests and the barrier properties by oxygen transmission rate (OTR). XRD patterns showed a combination of intercalated/exfoliated morphologies for the MMT, with higher d-001 interplanar distance increments for the blends with higher content of polar functional groups. SEM and TEM micrographs complement the results of the XRD analysis and show differences in the morphologies depending on the miscibility of the polyolefin and the polar monomer copolymer. Mechanical properties and oxygen permeability of composites exhibited a higher improvement, by the addition of MMT, for higher intermolecular interactions and most miscible polymeric system of the EVA. These results show that the higher the number of interactions, given by the VA or OH polar functional groups, the morphology and the miscibility between polyolefin and copolymer imply dispersion improvements of the nanocomposites and, in consequence, a higher improvement on the mechanical and barrier properties of the composite material.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Kuran, Witold. "Polar vinyl monomer polymerization and copolymerization with olefins promoted by organometallic catalysts". Polimery 42, n.º 10 (outubro de 1997): 604–9. http://dx.doi.org/10.14314/polimery.1997.604.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Marques, Maria M., Susete Fernandes, Sandra G. Correia, Susana Caroço, Pedro T. Gomes, Alberto R. Dias, João Mano, Marvin D. Rausch e James C W Chien. "Synthesis of polar vinyl monomer-olefin copolymers by α-diimine nickel catalyst". Polymer International 50, n.º 5 (4 de abril de 2001): 579–87. http://dx.doi.org/10.1002/pi.669.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Bodoki, Andreea, Bogdan-Cezar Iacob, Laura Gliga, Simona Oprean, David Spivak, Nicholas Gariano e Ede Bodoki. "Improved Enantioselectivity for Atenolol Employing Pivot Based Molecular Imprinting". Molecules 23, n.º 8 (27 de julho de 2018): 1875. http://dx.doi.org/10.3390/molecules23081875.

Texto completo da fonte
Resumo:
In the last few decades, molecular imprinting technology went through a spectacular evolution becoming a well-established tool for the synthesis of highly selective biomimetic molecular recognition platforms. Nevertheless, there is still room for advancement in the molecular imprinting of highly polar chiral compounds. The aim of the present work was to investigate the favorable kosmotropic effect of a ternary complex involving a polar chiral template (eutomer of atenolol) and a functional monomer, bridged by a central metal ion through well-defined, spatially directional coordinate bonds. The efficiency of the chiral molecular recognition was systematically assessed on polymers obtained both by non-covalent and metal-mediated molecular imprinting. The influence on the chromatographic retention and enantioselectivity of different experimental variables (functional monomers, cross-linkers, chaotropic agents, metal ions, porogenic systems, etc.) were studied on both slurry packed and monolithic HPLC columns. Deliberate changes in the imprinting and rebinding (chromatographic) processes, along with additional thermodynamic studies shed light on the particularities of the molecular recognition mechanism. The best performing polymer in terms of enantioselectivity (α = 1.60) was achieved using 4-vinyl pyridine as functional monomer and secondary ligand for the Co(II)-mediated imprinting of S-atenolol in the presence of EDMA as cross-linker in a porogenic mixture of [BMIM][BF4]:DMF:DMSO = 10:1:5, v/v/v.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Chen, Zhou, e Maurice Brookhart. "Exploring Ethylene/Polar Vinyl Monomer Copolymerizations Using Ni and Pd α-Diimine Catalysts". Accounts of Chemical Research 51, n.º 8 (20 de julho de 2018): 1831–39. http://dx.doi.org/10.1021/acs.accounts.8b00225.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Teses / dissertações sobre o assunto "Polar vinyl monomer"

1

Rünzi, Thomas [Verfasser]. "Generation of novel polymeric materials and catalyst deactivation pathways in polar vinyl monomer insertion copolymerization / Thomas Rünzi". Konstanz : Bibliothek der Universität Konstanz, 2014. http://d-nb.info/1080128794/34.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Schuster, Nicole [Verfasser]. "Reactivity of Polar Vinyl Monomers in Insertion Copolymerization and Application to Polyamide Impact Modification / Nicole Schuster". Konstanz : Bibliothek der Universität Konstanz, 2018. http://d-nb.info/1154386252/34.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Lehman, Stephen E. "Ruthenium catalysis in metathesis polymerization synthesis of linear copolymers of ethylene and polar vinyl monomers via metathesis /". [Gainesville, Fla.] : University of Florida, 2003. http://purl.fcla.edu/fcla/etd/UFE0001021.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Nagel, Megan L. "Copolymerization of polar and nonpolar vinyl monomers mechanistic insight and free radical polymerization /". 2006. http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-1418/index.htm.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Kang, Myeongsoon. "Investigation of late transition metal based catalytic systems for polymerication of polar vinyl monomers". 2004. http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-600/index.html.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Ku, Yuan-An, e 古元安. "The Effect of Polar Vinyl Monomers Grafting on the Flame Retardation of Plasma Pretreatment Polyethylene". Thesis, 2001. http://ndltd.ncl.edu.tw/handle/95599121886710337564.

Texto completo da fonte
Resumo:
碩士
大同大學
化學工程研究所
89
A rotating cylindric-type argon plasma treatment system was used for pretreating polyolefins for grafting polar vinyl monomers (HyM). In the part I, acrylic acid (AAc), maleic anhydride (MA) and succinic acid (SA) were grafted onto plasma-pretreatment-LDPE (PLDPE) by UV-induced polymerization to form the HyM-g-PLDPE matrix. The FT-IR spectra and SEM micrographs were detected. These matrix were blended with fillers, coupling agent, lubricant and antioxidant for Mg(OH)2 compounds with a Brabender mixer. The mechanical properties and limited oxygen index (LOI) of various blends were investigated. In the part II, among them maleic anhydride (MA) was used to graft onto plasma pretreatment-LDPE (PLDPE) by UV-induced polymerization to form the MA-g-PLDPE matrix. The MA-g-PLDPE was characterized by FT-IR spectra, SEM, TGA and ESCA observation. The modified PLDPE was then blended together with flame-retardant additive, FR 44-94S, coupling agent, lubricant and antioxidant for flammability reduction. The flammability of the blends, according to the mechanical properties and limited oxygen index (LOI) of these materials were all investigated with various amounts of FR 44-94S. Although the flammability of the LDPE/FR 44-94S blends was reduced by the addition of the flame-retardant, the tensile strength and impact strength were also decreased. A characteristic of flame-retardant as a plasticizer was found by measuring the variation of notched Izod impact strength vs flame-retardant content, and a phenomenon of anti-plastization appeared. For MA-g-PLDPE/FR 44-94S blends, the tensile strength, impact strength, Young’s modulus and LOI all increased because of the MA grafting modification.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Polar vinyl monomer"

1

Tanaka, Ryo, e Takeshi Shiono. "Coordination Polymerization (Styrene and Polar Vinyl Monomers)". In Encyclopedia of Polymeric Nanomaterials, 1–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_180-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Tanaka, Ryo, e Takeshi Shiono. "Coordination Polymerization (Styrene and Polar Vinyl Monomers)". In Encyclopedia of Polymeric Nanomaterials, 474–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_180.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Ishizone, Takashi, Yuki Kosaka e Raita Goseki. "Anionic Polymerization of Polar Vinyl Monomers: Vinylpyridines, (Meth)acrylates, (Meth)acrylamides, (Meth)acrylonitrile, Phenyl Vinyl Sulfoxide, Benzofulvene, and Other Monomers". In Anionic Polymerization, 127–89. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-54186-8_4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Kang, Myeongsoon, Ayusman Sen, Lev Zakharov e Arnold L. Rheingold. "Trends in Alkene Insertion in Late- and Early-Transition Metal Compounds: Relevance to Transition Metal-Catalyzed Polymerization of Polar Vinyl Monomers". In ACS Symposium Series, 143–53. Washington, DC: American Chemical Society, 2003. http://dx.doi.org/10.1021/bk-2003-0857.ch011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Tsvetanov, C. B., D. T. Dotcheva, D. K. Dimov, E. B. Petrova e I. M. Panayotov. "Donor-Acceptor Interactions of the Active Centres of Chain Propagation in the Anionic Polymerization of Acrylonitrile and Methacrylonitrile and Some Other Polar Vinyl Monomers". In Recent Advances in Anionic Polymerization, 155–71. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3175-6_11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Baskaran, D., e A. H. E. Müller. "Anionic Polymerization of Polar Vinyl Monomers". In Polymer Science: A Comprehensive Reference, 623–55. Elsevier, 2012. http://dx.doi.org/10.1016/b978-0-444-53349-4.00078-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia