Artigos de revistas sobre o tema "RGB-D object segmentation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 43 melhores artigos de revistas para estudos sobre o assunto "RGB-D object segmentation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Shen, Xiaoke, e Ioannis Stamos. "3D Object Detection and Instance Segmentation from 3D Range and 2D Color Images". Sensors 21, n.º 4 (9 de fevereiro de 2021): 1213. http://dx.doi.org/10.3390/s21041213.
Texto completo da fonteYang, J., e Z. Kang. "INDOOR SEMANTIC SEGMENTATION FROM RGB-D IMAGES BY INTEGRATING FULLY CONVOLUTIONAL NETWORK WITH HIGHER-ORDER MARKOV RANDOM FIELD". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4 (19 de setembro de 2018): 717–24. http://dx.doi.org/10.5194/isprs-archives-xlii-4-717-2018.
Texto completo da fonteRafique, Adnan Ahmed, Ahmad Jalal e Kibum Kim. "Automated Sustainable Multi-Object Segmentation and Recognition via Modified Sampling Consensus and Kernel Sliding Perceptron". Symmetry 12, n.º 11 (23 de novembro de 2020): 1928. http://dx.doi.org/10.3390/sym12111928.
Texto completo da fonteNovkovic, Tonci, Fadri Furrer, Marko Panjek, Margarita Grinvald, Roland Siegwart e Juan Nieto. "CLUBS: An RGB-D dataset with cluttered box scenes containing household objects". International Journal of Robotics Research 38, n.º 14 (23 de setembro de 2019): 1538–48. http://dx.doi.org/10.1177/0278364919875221.
Texto completo da fonteSchwarz, Max, Anton Milan, Arul Selvam Periyasamy e Sven Behnke. "RGB-D object detection and semantic segmentation for autonomous manipulation in clutter". International Journal of Robotics Research 37, n.º 4-5 (20 de junho de 2017): 437–51. http://dx.doi.org/10.1177/0278364917713117.
Texto completo da fonteThermos, Spyridon, Gerasimos Potamianos e Petros Daras. "Joint Object Affordance Reasoning and Segmentation in RGB-D Videos". IEEE Access 9 (2021): 89699–713. http://dx.doi.org/10.1109/access.2021.3090471.
Texto completo da fonteKang, Xujie, Jing Li, Xiangtao Fan, Hongdeng Jian e Chen Xu. "Object-Level Semantic Map Construction for Dynamic Scenes". Applied Sciences 11, n.º 2 (11 de janeiro de 2021): 645. http://dx.doi.org/10.3390/app11020645.
Texto completo da fonteKang, Xujie, Jing Li, Xiangtao Fan, Hongdeng Jian e Chen Xu. "Object-Level Semantic Map Construction for Dynamic Scenes". Applied Sciences 11, n.º 2 (11 de janeiro de 2021): 645. http://dx.doi.org/10.3390/app11020645.
Texto completo da fonteXie, Qian, Oussama Remil, Yanwen Guo, Meng Wang, Mingqiang Wei e Jun Wang. "Object Detection and Tracking Under Occlusion for Object-Level RGB-D Video Segmentation". IEEE Transactions on Multimedia 20, n.º 3 (março de 2018): 580–92. http://dx.doi.org/10.1109/tmm.2017.2751965.
Texto completo da fonteGe, Yanliang, Cong Zhang, Kang Wang, Ziqi Liu e Hongbo Bi. "WGI-Net: A weighted group integration network for RGB-D salient object detection". Computational Visual Media 7, n.º 1 (8 de janeiro de 2021): 115–25. http://dx.doi.org/10.1007/s41095-020-0200-x.
Texto completo da fonteRichtsfeld, Andreas, Thomas Mörwald, Johann Prankl, Michael Zillich e Markus Vincze. "Learning of perceptual grouping for object segmentation on RGB-D data". Journal of Visual Communication and Image Representation 25, n.º 1 (janeiro de 2014): 64–73. http://dx.doi.org/10.1016/j.jvcir.2013.04.006.
Texto completo da fonteShao, Lin, Parth Shah, Vikranth Dwaracherla e Jeannette Bohg. "Motion-Based Object Segmentation Based on Dense RGB-D Scene Flow". IEEE Robotics and Automation Letters 3, n.º 4 (outubro de 2018): 3797–804. http://dx.doi.org/10.1109/lra.2018.2856525.
Texto completo da fonteXu, Chi, Jiale Chen, Mengyang Yao, Jun Zhou, Lijun Zhang e Yi Liu. "6DoF Pose Estimation of Transparent Object from a Single RGB-D Image". Sensors 20, n.º 23 (27 de novembro de 2020): 6790. http://dx.doi.org/10.3390/s20236790.
Texto completo da fonteGupta, Saurabh, Pablo Arbeláez, Ross Girshick e Jitendra Malik. "Indoor Scene Understanding with RGB-D Images: Bottom-up Segmentation, Object Detection and Semantic Segmentation". International Journal of Computer Vision 112, n.º 2 (21 de novembro de 2014): 133–49. http://dx.doi.org/10.1007/s11263-014-0777-6.
Texto completo da fontePavel, Mircea Serban, Hannes Schulz e Sven Behnke. "Object class segmentation of RGB-D video using recurrent convolutional neural networks". Neural Networks 88 (abril de 2017): 105–13. http://dx.doi.org/10.1016/j.neunet.2017.01.003.
Texto completo da fonteJi, Yijun, Qing Xia e Zhijiang Zhang. "Fusing Depth and Silhouette for Scanning Transparent Object with RGB-D Sensor". International Journal of Optics 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/9796127.
Texto completo da fonteCalli, Berk, Arjun Singh, James Bruce, Aaron Walsman, Kurt Konolige, Siddhartha Srinivasa, Pieter Abbeel e Aaron M. Dollar. "Yale-CMU-Berkeley dataset for robotic manipulation research". International Journal of Robotics Research 36, n.º 3 (março de 2017): 261–68. http://dx.doi.org/10.1177/0278364917700714.
Texto completo da fonteWu, Yongxiang, Yili Fu e Shuguo Wang. "Deep instance segmentation and 6D object pose estimation in cluttered scenes for robotic autonomous grasping". Industrial Robot: the international journal of robotics research and application 47, n.º 4 (20 de abril de 2020): 593–606. http://dx.doi.org/10.1108/ir-12-2019-0259.
Texto completo da fonteHastürk, Özgür, e Aydan M. Erkmen. "DUDMap: 3D RGB-D mapping for dense, unstructured, and dynamic environment". International Journal of Advanced Robotic Systems 18, n.º 3 (1 de maio de 2021): 172988142110161. http://dx.doi.org/10.1177/17298814211016178.
Texto completo da fonteXu, Hui, Guodong Chen, Zhenhua Wang, Lining Sun e Fan Su. "RGB-D-Based Pose Estimation of Workpieces with Semantic Segmentation and Point Cloud Registration". Sensors 19, n.º 8 (19 de abril de 2019): 1873. http://dx.doi.org/10.3390/s19081873.
Texto completo da fonteLi, Wei, Junhua Gu, Benwen Chen e Jungong Han. "Incremental Instance-Oriented 3D Semantic Mapping via RGB-D Cameras for Unknown Indoor Scene". Discrete Dynamics in Nature and Society 2020 (23 de abril de 2020): 1–10. http://dx.doi.org/10.1155/2020/2528954.
Texto completo da fonteTian, Guanzhong, Liang Liu, JongHyok Ri, Yong Liu e Yiran Sun. "ObjectFusion: An object detection and segmentation framework with RGB-D SLAM and convolutional neural networks". Neurocomputing 345 (junho de 2019): 3–14. http://dx.doi.org/10.1016/j.neucom.2019.01.088.
Texto completo da fonteIriondo, Ander, Elena Lazkano e Ander Ansuategi. "Affordance-Based Grasping Point Detection Using Graph Convolutional Networks for Industrial Bin-Picking Applications". Sensors 21, n.º 3 (26 de janeiro de 2021): 816. http://dx.doi.org/10.3390/s21030816.
Texto completo da fonteZhuang, Chungang, Zhe Wang, Heng Zhao e Han Ding. "Semantic part segmentation method based 3D object pose estimation with RGB-D images for bin-picking". Robotics and Computer-Integrated Manufacturing 68 (abril de 2021): 102086. http://dx.doi.org/10.1016/j.rcim.2020.102086.
Texto completo da fonteRuiz-Sarmiento, J. R., C. Galindo e J. Gonzalez-Jimenez. "Robot@Home, a robotic dataset for semantic mapping of home environments". International Journal of Robotics Research 36, n.º 2 (fevereiro de 2017): 131–41. http://dx.doi.org/10.1177/0278364917695640.
Texto completo da fonteChen e Lin. "Virtual Object Replacement Based on Real Environments: Potential Application in Augmented Reality Systems". Applied Sciences 9, n.º 9 (29 de abril de 2019): 1797. http://dx.doi.org/10.3390/app9091797.
Texto completo da fonteGujjar, Harish S. "A Comparative Study of VoxelNet and PointNet for 3D Object Detection in Car by Using KITTI Benchmark". International Journal of Information Communication Technologies and Human Development 10, n.º 3 (julho de 2018): 28–38. http://dx.doi.org/10.4018/ijicthd.2018070103.
Texto completo da fonteWong, Ching-Chang, Li-Yu Yeh, Chih-Cheng Liu, Chi-Yi Tsai e Hisasuki Aoyama. "Manipulation Planning for Object Re-Orientation Based on Semantic Segmentation Keypoint Detection". Sensors 21, n.º 7 (24 de março de 2021): 2280. http://dx.doi.org/10.3390/s21072280.
Texto completo da fonteLiu, Weiping, Jia Sun, Wanyi Li, Ting Hu e Peng Wang. "Deep Learning on Point Clouds and Its Application: A Survey". Sensors 19, n.º 19 (26 de setembro de 2019): 4188. http://dx.doi.org/10.3390/s19194188.
Texto completo da fonteZhang, Jiahao, Miao Li, Ying Feng e Chenguang Yang. "Robotic grasp detection based on image processing and random forest". Multimedia Tools and Applications 79, n.º 3-4 (21 de novembro de 2019): 2427–46. http://dx.doi.org/10.1007/s11042-019-08302-9.
Texto completo da fonteTao, Chongben, Yufeng Jin, Feng Cao, Zufeng Zhang, Chunguang Li e Hanwen Gao. "3D Semantic VSLAM of Indoor Environment Based on Mask Scoring RCNN". Discrete Dynamics in Nature and Society 2020 (20 de outubro de 2020): 1–14. http://dx.doi.org/10.1155/2020/5916205.
Texto completo da fonteSánchez, Carlos Medina, Matteo Zella, Jesús Capitán e Pedro J. Marrón. "Semantic Mapping with Low-Density Point-Clouds for Service Robots in Indoor Environments". Applied Sciences 10, n.º 20 (14 de outubro de 2020): 7154. http://dx.doi.org/10.3390/app10207154.
Texto completo da fonteLiu, Haowei, Matthai Philipose e Ming-Ting Sun. "Automatic objects segmentation with RGB-D cameras". Journal of Visual Communication and Image Representation 25, n.º 4 (maio de 2014): 709–18. http://dx.doi.org/10.1016/j.jvcir.2013.03.012.
Texto completo da fonteSebastian, C., B. Boom, T. van Lankveld, E. Bondarev e P. H. N. De With. "BOOTSTRAPPED CNNS FOR BUILDING SEGMENTATION ON RGB-D AERIAL IMAGERY". ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences IV-4 (19 de setembro de 2018): 187–92. http://dx.doi.org/10.5194/isprs-annals-iv-4-187-2018.
Texto completo da fonteCheng, Junhao, Zhi Wang, Hongyan Zhou, Li Li e Jian Yao. "DM-SLAM: A Feature-Based SLAM System for Rigid Dynamic Scenes". ISPRS International Journal of Geo-Information 9, n.º 4 (27 de março de 2020): 202. http://dx.doi.org/10.3390/ijgi9040202.
Texto completo da fonteRunceanu, L. S., e N. Haala. "INDOOR MESH CLASSIFICATION FOR BIM". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4 (19 de setembro de 2018): 535–39. http://dx.doi.org/10.5194/isprs-archives-xlii-4-535-2018.
Texto completo da fonteMartinez, Manuel, Kailun Yang, Angela Constantinescu e Rainer Stiefelhagen. "Helping the Blind to Get through COVID-19: Social Distancing Assistant Using Real-Time Semantic Segmentation on RGB-D Video". Sensors 20, n.º 18 (12 de setembro de 2020): 5202. http://dx.doi.org/10.3390/s20185202.
Texto completo da fonteCai, Yuanzhi, Hong Huang, Kaiyang Wang, Cheng Zhang, Lei Fan e Fangyu Guo. "Selecting Optimal Combination of Data Channels for Semantic Segmentation in City Information Modelling (CIM)". Remote Sensing 13, n.º 7 (2 de abril de 2021): 1367. http://dx.doi.org/10.3390/rs13071367.
Texto completo da fonteGe, Yanliang, Cong Zhang, Kang Wang, Ziqi Liu e Hongbo Bi. "WGI-Net: A weighted group integration network for RGB-D salient object detection". Computational Visual Media, 8 de janeiro de 2021. http://dx.doi.org/10.1007/s41095-020-0200-x.
Texto completo da fonteThinh, Nguyen Hong, Tran Hoang Tung e Le Vu Ha. "Depth-aware salient object segmentation". VNU Journal of Science: Computer Science and Communication Engineering 36, n.º 2 (7 de outubro de 2020). http://dx.doi.org/10.25073/2588-1086/vnucsce.217.
Texto completo da fonte"Segmentation of Moving Objects using Numerous Background Subtraction Methods for Surveillance Applications". International Journal of Innovative Technology and Exploring Engineering 9, n.º 3 (10 de janeiro de 2020): 2553–63. http://dx.doi.org/10.35940/ijitee.c8811.019320.
Texto completo da fonteHöller, Benjamin, Annette Mossel e Hannes Kaufmann. "Automatic object annotation in streamed and remotely explored large 3D reconstructions". Computational Visual Media, 7 de janeiro de 2021. http://dx.doi.org/10.1007/s41095-020-0194-4.
Texto completo da fonteBędkowski, J., e J. Naruniec. "On-line range images registration with GPGPU". Opto-Electronics Review 21, n.º 1 (1 de janeiro de 2013). http://dx.doi.org/10.2478/s11772-013-0074-x.
Texto completo da fonte