Literatura científica selecionada sobre o tema "RNA therapeutic"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "RNA therapeutic".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "RNA therapeutic"
Mahy, BWJ. "Therapeutic RNA?" Reviews in Medical Virology 15, n.º 6 (2005): 349–50. http://dx.doi.org/10.1002/rmv.485.
Texto completo da fonteLiu, Xiang, Yu Zhang, Shurong Zhou, Lauren Dain, Lei Mei e Guizhi Zhu. "Circular RNA: An emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines". Journal of Controlled Release 348 (agosto de 2022): 84–94. http://dx.doi.org/10.1016/j.jconrel.2022.05.043.
Texto completo da fonteEVERTS, SARAH. "RNA DISTRACTION IS THERAPEUTIC". Chemical & Engineering News 87, n.º 29 (20 de julho de 2009): 15. http://dx.doi.org/10.1021/cen-v087n029.p015a.
Texto completo da fontePoller, Wolfgang, Juliane Tank, Carsten Skurk e Martina Gast. "Cardiovascular RNA Interference Therapy". Circulation Research 113, n.º 5 (16 de agosto de 2013): 588–602. http://dx.doi.org/10.1161/circresaha.113.301056.
Texto completo da fonte&NA;. "Therapeutic potential of RNA??interference". Inpharma Weekly &NA;, n.º 1411 (novembro de 2003): 2. http://dx.doi.org/10.2165/00128413-200314110-00001.
Texto completo da fonteStevenson, Mario. "Therapeutic Potential of RNA Interference". New England Journal of Medicine 351, n.º 17 (21 de outubro de 2004): 1772–77. http://dx.doi.org/10.1056/nejmra045004.
Texto completo da fonteHan, Xuexiang, Michael J. Mitchell e Guangjun Nie. "Nanomaterials for Therapeutic RNA Delivery". Matter 3, n.º 6 (dezembro de 2020): 1948–75. http://dx.doi.org/10.1016/j.matt.2020.09.020.
Texto completo da fonteSioud, Mouldy, e Marianne Leirdal. "Therapeutic RNA and DNA enzymes". Biochemical Pharmacology 60, n.º 8 (outubro de 2000): 1023–26. http://dx.doi.org/10.1016/s0006-2952(00)00395-6.
Texto completo da fonteNovina, C. D. "Therapeutic potential of RNA interference". Biomedicine & Pharmacotherapy 58, n.º 4 (maio de 2004): 270. http://dx.doi.org/10.1016/j.biopha.2002.12.001.
Texto completo da fontevan Ommen, Gert-Jan B., e Annemieke Aartsma-Rus. "Advances in therapeutic RNA-targeting". New Biotechnology 30, n.º 3 (março de 2013): 299–301. http://dx.doi.org/10.1016/j.nbt.2013.01.005.
Texto completo da fonteTeses / dissertações sobre o assunto "RNA therapeutic"
Kavitha, Siva. "RNA-based therapeutic approaches for FTDP-17". Doctoral thesis, Università degli studi di Trento, 2015. https://hdl.handle.net/11572/367651.
Texto completo da fonteKavitha, Siva. "RNA-based therapeutic approaches for FTDP-17". Doctoral thesis, University of Trento, 2015. http://eprints-phd.biblio.unitn.it/1552/1/PhD_thesis_Siva_K_June_2015.pdf.
Texto completo da fonteWhite, Melanie Denise. "RNA interference as a therapeutic approach in prion disease". Thesis, University College London (University of London), 2008. http://discovery.ucl.ac.uk/1445182/.
Texto completo da fonteWu, Connie Ph D. Massachusetts Institute of Technology. "Engineering periodic short hairpin RNA delivery systems for enhanced therapeutic efficacy". Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121821.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references.
RNA interference (RNAi) presents a highly promising approach for cancer therapeutics via specific silencing of disease-implicated genes, but its clinical translation remains severely limited by barriers in delivering short interfering RNA (siRNA). Numerous delivery vehicles have been developed to protect siRNA from degradation, promote target cell uptake, and facilitate endosomal escape into the cytoplasm, where RNAi occurs. However, in vivo instability, low silencing efficiency, undesired toxicity, and immunogenicity remain challenges for current siRNA delivery systems, particularly as the low valency and high rigidity of siRNA make it difficult to condense into stable nanoparticles. Here we engineer the siRNA cargo to make it more amenable to stable encapsulation by using a polymeric form of siRNA, or periodic short hairpin RNA (p-shRNA), as well as design a biodegradable polycationic carrier for efficient in vivo delivery of p-shRNA.
Consisting of tens of linked siRNA repeats, p-shRNA is synthesized by the repeated action of T7 RNA polymerase around a circular DNA template. We first leverage molecular engineering design an open-ended p-shRNA structure that is efficiently processed inside cells into siRNAs, greatly enhancing its silencing potency. Furthermore, the much higher valency and flexibility of p-shRNA compared to siRNA enable more stable complexation with delivery materials. To exploit these advantages of p-shRNA, we optimize biodegradable polycations with hydrophobic regions that promote stable condensation and efficient intracellular release. Our approach unveils key design rules governing p-shRNA delivery, and we develop stabilized p-shRNA complexes that show in vivo therapeutic efficacy in a syngeneic melanoma mouse model. Finally, we extend our p-shRNA platform to act as a dual therapeutic agent, harnessing innate immune activation together with gene silencing.
By modulating the surface of the p-shRNA complexes with an anionic polypeptide, we dramatically enhance innate immune recognition of p-shRNA by pattern recognition receptors while maintaining high silencing efficiency. These dually acting complexes can target ovarian tumors in vivo and prolong survival in a syngeneic ovarian cancer mouse model. Our findings establish a potent, multifunctional RNAi platform that can potentially move RNAi therapeutics closer to clinical translation by addressing the delivery and in vivo efficacy challenges faced by current siRNA systems.
National Science Foundation Graduate Research Fellowshipgrant #1122374
Koch Institute Ludwig Center for Molecular Oncology Graduate Fellowship
Congressionally Directed Medical Research Program Ovarian Cancer Research Program Teal Innovator Award from the Department of Defense (13-1-0151)
by Connie Wu.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Chemical Engineering
BALESTRA, Dario. "Modified U1snRNAs as innovative therapeutic strategy for inherited coagulation factor deficiencies". Doctoral thesis, Università degli studi di Ferrara, 2012. http://hdl.handle.net/11392/2388781.
Texto completo da fonteAl-Mazedi, Maryam. "A therapeutic approach to chronic myeloid leukaemia using short hairpin RNA molecules". Thesis, King's College London (University of London), 2012. https://kclpure.kcl.ac.uk/portal/en/theses/a-therapeutic-approach-to-chronic-myeloid-leukaemia-using-short-hairpin-rna-molecules(185139fb-ed9b-46d7-a5a8-04532c44640b).html.
Texto completo da fonteJubair, Luqman Khaleel. "Next-Generation Cancer Therapies: The Therapeutic Potential of RNA-Directed Gene-Editing". Thesis, Griffith University, 2018. http://hdl.handle.net/10072/382679.
Texto completo da fonteThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Medical Science
Griffith Health
Full Text
Elmén, Joacim. "Nucleic acid based therapeutic approaches /". Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-047-8/.
Texto completo da fonteHong, Lingzi. "Act1-Mediated RNA Metabolism in IL-17-Driven Inflammatory Diseases". Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case162673878106271.
Texto completo da fonteChitiprolu, Maneka. "Novel Regulatory Mechanisms of Autophagy in Human Disease: Implications for the Development of Therapeutic Strategies". Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38441.
Texto completo da fonteLivros sobre o assunto "RNA therapeutic"
A, Mulligan James. MicroRNA: Expression, detection, and therapeutic strategies. New York: Nova Science, 2011.
Encontre o texto completo da fonteSioud, Mouldy. RNA interference: Challenges and therapeutic opportunities. New York: Humana Press, 2015.
Encontre o texto completo da fonteHiroshi, Takaku, e Yamamoto Naoki 1945-, eds. RNAi therapeutics, 2006. Trivandrum, Kerala, India: Transworld Research Network, 2006.
Encontre o texto completo da fonteArbuthnot, Patrick, e Marc S. Weinberg. Applied RNAi: From fundamental research to therapeutic applications. Norfolk, UK: Caister Academic Press, 2014.
Encontre o texto completo da fonteRNA therapeutics: Function, design, and delivery. New York: Humana Press, 2010.
Encontre o texto completo da fonteYasko, Amy. Heal your body naturally: The power of RNA. [United States]: Matrix Development Pub., 2004.
Encontre o texto completo da fonte1947-, Scanlon Kevin J., ed. Therapeutic applications of ribozymes. Totowa, N.J: Humana Press, 1998.
Encontre o texto completo da fonteTherapeutic applications of ribozymes and riboswitches: Methods and protocols. New York: Humana Press, 2014.
Encontre o texto completo da fonteThomas, Tuschl, Rossi John J e New York Academy of Sciences, eds. Oligonucleotide therapeutics. Boston, Mass: Blackwell on behalf of the New York Academy of Sciences, 2006.
Encontre o texto completo da fonte1922-, Weiss Benjamin, ed. Antisense oligodeoxynucleotides and antisense RNA: Novel pharmacological and therapeutic agents. Roca Raton, Fla: CRC Press, 1997.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "RNA therapeutic"
Kang, Moo Rim, Gongcheng Li, Tiejun Pan, Jin-Chun Xing e Long-Cheng Li. "Development of Therapeutic dsP21-322 for Cancer Treatment". In RNA Activation, 217–29. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4310-9_16.
Texto completo da fonteSioud, Mouldy. "RNA Interference: Mechanisms, Technical Challenges, and Therapeutic Opportunities". In RNA Interference, 1–15. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1538-5_1.
Texto completo da fonteIversen, Per Ole, e Mouldy Sioud. "Engineering Therapeutic Cancer Vaccines That Activate Antitumor Immunity". In RNA Interference, 263–68. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1538-5_15.
Texto completo da fontePierce, Jacob B., Haoyang Zhou, Viorel Simion e Mark W. Feinberg. "Long Noncoding RNAs as Therapeutic Targets". In Long Noncoding RNA, 161–75. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92034-0_9.
Texto completo da fonteSeth, Shaguna, Michael V. Templin, Gregory Severson e Oleksandr Baturevych. "A Potential Therapeutic for Pandemic Influenza Using RNA Interference". In RNA Interference, 397–422. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-588-0_26.
Texto completo da fonteGuha, Shalini, Priyanka Barman, Aruniti Manawa e Sukesh R. Bhaumik. "Nuclear Export of mRNAs with Disease Pathogenesis and Therapeutic Implications". In RNA Technologies, 371–95. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08415-7_17.
Texto completo da fonteCheng, Yi, Dong Zhang, Travis Hurst, Xiaoqin Zou, Paloma H. Giangrande e Shi-Jie Chen. "RNA Structural Modeling for Therapeutic Applications". In RNA Nanotechnology and Therapeutics, 447–61. 2a ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003001560-47.
Texto completo da fonteYoo, Ji Young, Balveen Kaur, Tae Jin Lee e Peixuan Guo. "MicroRNAs in Human Cancers and Therapeutic Applications". In RNA Nanotechnology and Therapeutics, 529–42. 2a ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003001560-54.
Texto completo da fonteSzymański, Maciej, e Jan Barciszewski. "Noncoding RNAs as Therapeutic Targets". In RNA Technologies and Their Applications, 393–418. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12168-5_18.
Texto completo da fonteAkaneya, Yukio. "A New Approach for Therapeutic Use by RNA Interference in the Brain". In RNA Interference, 313–24. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-588-0_20.
Texto completo da fonteTrabalhos de conferências sobre o assunto "RNA therapeutic"
Ke, Yonggang, DongMoon Shin e Georgia Chen. "Abstract 3635: RNA-based nanostructures for therapeutic siRNA delivery". In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-3635.
Texto completo da fonteKe, Yonggang, DongMoon Shin e Georgia Chen. "Abstract 3635: RNA-based nanostructures for therapeutic siRNA delivery". In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-3635.
Texto completo da fonteEndo-Takahashi, Yoko, Yoichi Negishi, Ryo Suzuki, Kazuo Maruyama, Yukihiko Aramaki, Yoichiro Matsumoto, Lawrence A. Crum e Gail Reinette ter Haar. "Novel siRNA-loaded Bubble Liposomes with Ultrasound Exposure for RNA Interference". In 10TH INTERNATIONAL SYMPOSIUM ON THERAPEUTIC ULTRASOUND (ISTU 2010). AIP, 2011. http://dx.doi.org/10.1063/1.3607930.
Texto completo da fonteLoeb, David M., Breelyn A. Wilky, Catherine Kim, Elizabeth Montgomery e Venu Raman. "Abstract A77: RNA helicase DDX3 – A novel therapeutic target in sarcoma". In Abstracts: AACR Special Conference: Pediatric Cancer at the Crossroads: Translating Discovery into Improved Outcomes; November 3-6, 2013; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.pedcan-a77.
Texto completo da fonteHao, Liangliang, Justin Lo e Sangeeta Bhatia. "Abstract 5088: Tumor penetrating RNA delivery for therapeutic benefit of pancreatic cancer". In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-5088.
Texto completo da fontePachera, E., A. Wunderlin, S. Assassi, G. Salazar, M. Frank-Bertoncelj, R. Dobrota, M. Brock et al. "OP0086 Long noncoding RNA H19X as a new therapeutic target for fibrosis". In Annual European Congress of Rheumatology, 14–17 June, 2017. BMJ Publishing Group Ltd and European League Against Rheumatism, 2017. http://dx.doi.org/10.1136/annrheumdis-2017-eular.4877.
Texto completo da fonteWoo, C., N. Clark, A. Sarode, N. Kaushal, K. Tran, T. Efthymiou, J. Abysalh et al. "A Messenger RNA (mRNA)-Based Therapeutic Designed to Treat Primary Ciliary Dyskinesia". In American Thoracic Society 2021 International Conference, May 14-19, 2021 - San Diego, CA. American Thoracic Society, 2021. http://dx.doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a1138.
Texto completo da fonteGoueli, Said A., e Kevin Hsiao. "Abstract 1162: Monitoring COVID-19 RNA methyltransferases activities for developing therapeutic drugs". In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-1162.
Texto completo da fonteGhazaly, Essam A., John Le Quesne, Dahai Jiang, Selanere L. Mangala, James Chettle, Cristian Rodriguez-Aguayo, Gabriel Lopez-Berestein et al. "Abstract B30: The RNA-binding protein LARP1 is a cancer therapeutic target". In Abstracts: AACR Special Conference on Translational Control of Cancer: A New Frontier in Cancer Biology and Therapy; October 27-30, 2016; San Francisco, CA. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.transcontrol16-b30.
Texto completo da fonteMitra, Sheetal A., Anirban P. Mitra, Jonathan D. Buckley, William A. May, Philipp Kapranov, Robert J. Arceci e Timothy J. Triche. "Abstract A43: Therapeutic importance of a long noncoding RNA in Ewing sarcoma". In Abstracts: AACR Special Conference: Pediatric Cancer at the Crossroads: Translating Discovery into Improved Outcomes; November 3-6, 2013; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.pedcan-a43.
Texto completo da fonteRelatórios de organizações sobre o assunto "RNA therapeutic"
Chu, Jimmy, Kathryn Black, Luis Santos e Steven Wall. The challenges of using RNA as a therapeutic or a gene-editing tool. Biophorum, novembro de 2021. http://dx.doi.org/10.46220/2021cgt006.
Texto completo da fonteARIZONA STATE UNIV TEMPE CANCER RESEARCH INST. Discovery and Development of Therapeutic Drugs Against Lethal Human RNA Viruses: A Multidisciplinary Assault. Fort Belvoir, VA: Defense Technical Information Center, março de 1992. http://dx.doi.org/10.21236/ada251561.
Texto completo da fontePettit, George R. Discovery and Development of Therapeutic Drugs against Lethal Human RNA Viruses: a Multidisciplinary Assault. Fort Belvoir, VA: Defense Technical Information Center, julho de 1991. http://dx.doi.org/10.21236/ada239742.
Texto completo da fontePettit, George R. Discovery and Development of Therapeutic Drugs against Lethal Human RNA- Viruses: A Multidisciplinary Assault. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 1990. http://dx.doi.org/10.21236/ada219393.
Texto completo da fonteChen, Shuo. Anti-Androgen Receptor RNA Enzyme as a Novel Therapeutic Agent for Prostate Cancer In Vivo. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2006. http://dx.doi.org/10.21236/ada462865.
Texto completo da fonteChakraborty, Srijani. The Dawn of RNA Therapeutics. Spring Library, dezembro de 2020. http://dx.doi.org/10.47496/sl.blog.19.
Texto completo da fonteGiordano, Tony. Development of RNAi Libraries for Target Validation and Therapeutics. Fort Belvoir, VA: Defense Technical Information Center, março de 2006. http://dx.doi.org/10.21236/ada452228.
Texto completo da fonteMao, Hai-Quan. Nanoparticle Delivery of RNAi Therapeutics for Ocular Vesicant Injury. Fort Belvoir, VA: Defense Technical Information Center, abril de 2014. http://dx.doi.org/10.21236/ada613316.
Texto completo da fonteMoore, Melissa. Phase II - Procurement of State of the Art Research Equipment to Support Faculty Members with the RNA Therapeutics Institute, a component of the Advanced Therapeutics Cluster at the University of Massachusetts Medical School. Office of Scientific and Technical Information (OSTI), outubro de 2011. http://dx.doi.org/10.2172/1037882.
Texto completo da fonteChen, Xiaole, Peng Wang, Yunquan Luo, Yi-Yu Lu, Wenjun Zhou, Mengdie Yang, Jian Chen, Zhi-Qiang Meng e Shi-Bing Su. Therapeutic Efficacy Evaluation and Underlying Mechanisms Prediction of Jianpi Liqi Decoction for Hepatocellular Carcinoma. Science Repository, setembro de 2021. http://dx.doi.org/10.31487/j.jso.2021.02.04.sup.
Texto completo da fonte