Добірка наукової літератури з теми "Control-based design"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Control-based design".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Control-based design":

1

Li, Changzheng, Zhiyi Qu, and Yong Zhao. "Swimmy Disease Diagnosis Based on PLC Control System Design and Implementation." International Journal of Computer and Communication Engineering 4, no. 1 (2015): 57–60. http://dx.doi.org/10.7763/ijcce.2015.v4.382.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

R, Sathish. "Design and Implementation IOT based Industrial Sub Station Monitoring and Control System." Journal of Advanced Research in Dynamical and Control Systems 12, SP7 (July 25, 2020): 1796–801. http://dx.doi.org/10.5373/jardcs/v12sp7/20202291.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mayne, D. Q., and E. Polak. "Optimization Based Design and Control †." IFAC Proceedings Volumes 26, no. 2 (July 1993): 921–30. http://dx.doi.org/10.1016/s1474-6670(17)48408-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhu, Ya Jun. "Temperature Control System Based on Fuzzy Control Design." Applied Mechanics and Materials 738-739 (March 2015): 1061–65. http://dx.doi.org/10.4028/www.scientific.net/amm.738-739.1061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In traditional control field, the control system dynamic model is accurate or not affecting the merits of the main control key, the more detailed dynamic information system, the more it can achieve precise control. However, for complex systems, because too many variables are often difficult to accurately describe the dynamic system, so engineers will use a variety of methods to simplify the system dynamics, in order to achieve the purpose of control, but not ideal. Fuzzy control is essentially a nonlinear control, intelligent control of subordinate category. The design, select AT89S51 microcontroller as controller design an intelligent heat faster. The intelligent heater temperature can be maintained within a set temperature range, so that the water temperature to fluctuate within a range set value and set value down to 0.5 degrees Celsius. Temperature sensor detects a temperature every second. Temperature can be displayed to one decimal place. Temperature detected by real-time digital display. Fuzzy Control of a major feature of both systematic theory, there are a lot of practical application background. Development of fuzzy control has been rapid and widespread application. Nearly 20 years, both in theory and fuzzy control technology has made ​​great strides to become a very active field of automatic control but fruitful branch. Typical applications involve many aspects of their production and life, for example, fuzzy washing machines, air conditioners and other aspects.
5

Jabeen, Talat, and Ganesh Wakte. "Design and Implementation of Speed Control of Induction Motor using Arduino Based FLC." International Journal of Trend in Scientific Research and Development Volume-3, Issue-4 (June 30, 2019): 328–32. http://dx.doi.org/10.31142/ijtsrd23684.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Verma, Anshul, and K. K. Pattanaik. "Multi-Agent Communication Based Train Control System for Indian Railways: The Structural Design." Journal of Software 10, no. 3 (March 2015): 250–59. http://dx.doi.org/10.17706/jsw.10.3.250-259.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Turin, Raymond, Rong Zhang, and Man-Feng Chang. "Systematic Model-Based Engine Control Design." SAE International Journal of Passenger Cars - Electronic and Electrical Systems 1, no. 1 (April 14, 2008): 413–24. http://dx.doi.org/10.4271/2008-01-0994.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bekiaris-Liberis, Nikolaos, Claudio Roncoli, and Markos Papageorgiou. "Predictor-Based Adaptive Cruise Control Design." IEEE Transactions on Intelligent Transportation Systems 19, no. 10 (October 2018): 3181–95. http://dx.doi.org/10.1109/tits.2017.2771501.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ye, Yongqiang, Danwei Wang, Bin Zhang, and Yigang Wang. "Simple LMI based learning control design." Asian Journal of Control 11, no. 1 (January 2009): 74–77. http://dx.doi.org/10.1002/asjc.82.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mušič, Gašper, Drago Matko, and Borut Zupančič. "MODEL BASED PROGRAMMABLE CONTROL LOGIC DESIGN." IFAC Proceedings Volumes 35, no. 1 (2002): 193–98. http://dx.doi.org/10.3182/20020721-6-es-1901.00520.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Control-based design":

1

Zhu, Minglei. "Control-based design of Robots." Thesis, Ecole centrale de Nantes, 2020. http://www.theses.fr/2020ECDN0043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Il est bien connu que les robots parallèles ont de nombreuses applications dans l ’industrie. Cependant, en raison de leur structure complexe, leur contrôle peut être difficile. Lorsqu'une précision élevée est nécessaire , un modèle complet du robot détaillé est nécessaire . Les approches de contrôle référencées capteurs se sont avérées plus efficaces , en termes de précision que les contrôleurs basés modèles puisqu'elles s’affranchissent des modèles de robots complexes et des erreurs de modélisation associées. Néanmoins, lors de l'application de d’un asservissement visuel , il y a toujours des problèmes dans le processus de contrôle , tels que les singularités du contrôleur . Cette thèse propose une méthodologie de conception orientée commande qui prend en compte les performances de précision du contrôleur dans le processus de conception du robot pour obtenir les paramètres géométriques optimaux de ce dernier Trois contrôleurs ont été sélectionnés dans le processus de conception du robot : les commandes basées sur l’observation des directions des jambes, les commandes basées sur l’observation des lignes et les commandes basées sur des moments dans l'image .Pour vérifier les performances en terme de précision des robots optimisés, nous avons effectué des co-simulations des robots optimisés avec les contrôleurs correspondants . En terme d’expérimentation, deux prototypes de robots DELTA ont été conçus et expérimentés afin de valider la précision du contrôleur
It is well -known that parallel robots have a lot of applications in industry for their high stiffness , high payload , can reach higher acceleration and speed . However , because of their complex structure , their control may be troublesome. When high accuracy is needed, the detailed robot model is necessary . However , even detailed models still suffer from the problem of inaccuracy in reality because of robot assembly and manufacturing errors . Sensor - based control approaches have been proven to be more efficient than model-based controllers in terms of accuracy since they overcome the complex robot models and inconsistency errors. Nevertheless, when applying the visual servoing, there are always some problems in the control process , such as the controller singularities . Thus , this thesis proposes proposes a control based design metodology which takes into account the accuracy performance of the controller in the design process to get the geometric parameters of the robot. This thesis applied the control-based design methodology to the optimal design of three types of parallel robots: Five-bar mechanisms , DELTA robots , Gough -Stewart platforms . Three types of controllers are selected in the design process : leg -direction -based visual servoing, line-baesd visual servoing and image moment visual servoing . Design optimization problems are formulated to find the geometric parameters of the robot . Co-simulations are performed to check the accuracy performance of the robots obtained from the optimization. Experiments are performed with two DELTA robot prototypes in order to validate the controller accuracy
2

Chang, Hao-Chi. "Sliding mode control design based on block control principle /." The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486461246815228.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yuan, Xin. "Model-based feedback control of subsonic cavity flows - control design." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1158032317.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schmidt, Henning. "Model based design of decentralized control configurations." Licentiate thesis, KTH, Signals, Sensors and Systems, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1438.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hu, Wenshan. "Design of networked control systems and global Web-based control laboratory." Thesis, University of South Wales, 2008. https://pure.southwales.ac.uk/en/studentthesis/design-of-networked-control-systems-and-global-webbased-control-laboratory(0c8a2649-120a-494f-a887-defcaceed570).html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis mainly focuses on two Internet based control applications. One is a networked control system (NCS) where the control loop is closed through the network. The other is the Networked Control System Laboratory (NCSLab) which is a global web based remote experimentation platform. The contribution in the first part of the thesis relates to the networked predictive control (NPC) which was first introduced by Liu et al. (2004). In this method, the controller uses the model predictive approach to predict a future control sequence and send it to the plant in a network packet. The plant side receives this packet and then determine the appropriate control signal to apply to the actuator according to the time delay measurement. This method is innovative and works well in theory, but it has two deficiencies in practical applications. The first deficiency is that it needs synchronization between the controller and plant side to measure the individual forward and feedback channel time delays and this is very hard to achieve on the Internet. In this thesis, a round-trip NPC is proposed in which the predictive calculations and signal selections are based on the round-trip delay. The measurement of the round-tip delay is achieved using the plant side clock only, so that the need for synchronization is avoided. The second deficiency is that the mathematical model has to be accurately known. Otherwise the accuracy of the predictive calculation is affected, which may result in a degraded control performance. An event-driven NPC scheme is introduced to solve this problem. In this scheme, the selection of the appropriate control signal is not based on the time delay measurement but on the previous system output. This method can compensate for the effect of model uncertainty, which has been verified by both simulations and real-time experiments. Some experiments carried out on other NPC schemes are also reported on in this thesis. They are the NPC in state-space form and nonlinear NPC. These methods expand the use of NPC methodology. The second part of the thesis describes the design and implementation of the Networked Control System Laboratory. The NCSLab is based in the University of Glamorgan but its test rigs are diversely located in four Institutions from both the UK and China. In order to manage these test rigs from different places, a four layer structure (Central Server/Regional Server/Sub-Server/Test Rig) is adopted. The four layers are integrated into one system via the Internet. In order to deliver the remote experimentation to the users, a web-based user interface is designed. It provides great flexibility to the users such as remote monitoring, remote tuning and remote control algorithms. The implementation of the user interface (UI) heavily adopts the AJAX technology, so the remote experiments can be conducted inside the web browsers without installing special plug-ins. In order to show how the NCSLab works, two examples are given in the thesis.
6

Okura, Yuki. "Trajectory Design Based on Robust Optimal Control and Path Following Control." Kyoto University, 2019. http://hdl.handle.net/2433/242499.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
付記する学位プログラム名: デザイン学大学院連携プログラム
Kyoto University (京都大学)
0048
新制・課程博士
博士(工学)
甲第21761号
工博第4578号
新制||工||1713(附属図書館)
京都大学大学院工学研究科航空宇宙工学専攻
(主査)教授 藤本 健治, 教授 泉田 啓, 教授 太田 快人
学位規則第4条第1項該当
7

Sorensen, Dennis R. "Design and control of a space based two link manipulator with Lyapunov based control laws." Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/23618.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Möller, Niels. "Window-based congestion control : Modeling, analysis and design." Doctoral thesis, KTH, Reglerteknik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4594.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis presents a model for the ACK-clock inner loop, common to virtually all Internet congestion control protocols, and analyzes the stability properties of this inner loop, as well as the stability and fairness properties of several window update mechanisms built on top of the ACK-clock. Aided by the model for the inner-loop, two new congestion control mechanisms are constructed, for wired and wireless networks. Internet traffic can be divided into two main types: TCP traffic and real-time traffic. Sending rates for TCP traffic, e.g., file-sharing, uses window-based congestion control, and adjust continuously to the network load. The sending rates for real-time traffic, e.g., voice over IP, are mostly independent of the network load. The current version of the Transmission Control Protocol (TCP) results in large queueing delays at bottlenecks, and poor quality for real-time applications that share a bottleneck link with TCP. The first contribution is a new model for the dynamic relationship between window sizes, sending rates, and queue sizes. This system, with window sizes as inputs, and queue sizes as outputs, is the inner loop at the core of window-based congestion control. The new model unifies two models that have been widely used in the literature. The dynamics of this system, including the static gain and the time constant, depend on the amount of cross traffic which is not subject to congestion control. The model is validated using ns-2 simulations, and it is shown that the system is stable. For moderate cross traffic, the system convergence time is a couple of roundtrip times. When introducing a new congestion control protocol, one important question is how flows using different protocols share resources. The second contribution is an analysis of the fairness when a flow using TCP Westwood+ is introduced in a network that is also used by a TCP New Reno flow. It is shown that the sharing of capacity depends on the buffer size at the bottleneck link. With a buffer size matching the bandwidth-delay product, both flows get equal shares. If the buffer size is smaller, Westwood+ gets a larger share. In the limit of zero buffering, it gets all the capacity. If the buffer size is larger, New Reno gets a larger share. In the limit of very large buffers, it gets 3/4 of the capacity. The third contribution is a new congestion control mechanism, maintaining small queues. The overall control structure is similar to the combination of TCP with Active Queue Management (AQM) and explicit congestion notification, where routers mark some packets according to a probability which depends on the queue size. The key ideas are to take advantage of the stability of the inner loop, and to use control laws for setting and reacting to packet marks that result in more frequent feedback than with AQM. Stability analysis for the single flow, single bottleneck topology gives a simple stability condition, which can be used to guide tuning. Simulations, both of the fluid-flow differential equations, and in the ns-2 packet simulator, show that the protocol maintains small queues. The simulations also indicate that tuning, using a single control parameter per link, is fairly easy. The final contribution is a split-connection scheme for downloads to a mobile terminal. A wireless mobile terminal requests a file from a web server, via a proxy. During the file transfer, the Radio Network Controller (RNC) informs the proxy about bandwidth changes over the radio channel, and the current RNC queue length. A novel control mechanism in the proxy uses this information to adjust the window size. In simulation studies, including one based on detailed radio-layer simulations, both the user response time and the link utilization are improved, compared TCP New Reno, Eifel and Snoop, both for a dedicated channel, and for the shared channel in High-Speed Downlink Packet Access.
QC 20100830
9

M, Venkata Raghu Chaitanya. "Model Based Aircraft Control System Design and Simulation." Thesis, Linköping University, Linköping University, Department of Management and Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-19264.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

Development of modern aircraft has become more and more expensive and time consuming. In order to minimize the development cost, an improvement of the conceptual design phase is needed. The desired goal of the project is to enhance the functionality of an in house produced framework conducted at the department of machine design, consisting of parametric models representing a large variety of aircraft concepts.

The first part of the work consists of the construction of geometric aircraft control surfaces such as flaps, aileron, rudder and elevator parametrically in CATIA V5.

The second part of the work involves designing and simulating an Inverse dynamic model in Dymola software.

An Excel interface has been developed between CATIA and Dymola. Parameters can be varied in the interface as per user specification; these values are sent to CATIA or Dymola and vice versa. The constructed concept model of control surfaces has been tested for different aircraft shapes and layout. The simulation has been done in Dymola for the control surfaces.

10

Chen, J. "Model-Based Wireless Network Control using Co-Design." Thesis, Queen's University Belfast, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.527670.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Control-based design":

1

Yang, Shuang-Hua. Internet-based Control Systems: Design and Applications. London: Springer-Verlag London Limited, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Baranyi, Péter. TP-Model Transformation-Based-Control Design Frameworks. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19605-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

H, Tooley Michael. PC-based instrumentation and control. 3rd ed. Amsterdam: Elsevier/Butterworth Heinemann, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

H, Tooley Michael. PC-based instrumentation and control. Jordan Hill, Oxford: Newnes, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Forrai, Alexandru. Embedded Control System Design: A Model Based Approach. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bai, He. Cooperative Control Design: A Systematic, Passivity-Based Approach. New York, NY: Springer Science+Businees Media, LLC, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ibrahim, Dogan. Microcontroller based applied digital control. Chichester, England: John Wiley, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ibrahim, Dogan. Microcontroller based applied digital control. Hoboken, NJ: John Wiley, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sorensen, Dennis R. Design and control of a space based two link manipulator with Lyapunov based control laws. Monterey, Calif: Naval Postgraduate School, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ichikawa, Kunihiko. Control system design based on exact model matching techniques. Berlin: Springer-Verlag, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Control-based design":

1

Moody, John O., and Panos J. Antsaklis. "Invariant Based Control Design." In Supervisory Control of Discrete Event Systems Using Petri Nets, 23–32. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5711-1_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yang, Shuang-Hua. "Web-based User Interface Design." In Internet-based Control Systems, 29–36. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-84996-359-6_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rabbath, C. A., and N. Léchevin. "Flatness-based Control." In Discrete-Time Control System Design with Applications, 105–34. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9290-0_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yang, Shuang-Hua. "Internet-based Control System Architecture Design." In Internet-based Control Systems, 17–27. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-84996-359-6_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Palm, Rainer, Hans Hellendoorn, and Dimiter Driankov. "Model Based Design of Sliding Mode FLC." In Model Based Fuzzy Control, 75–116. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03401-9_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Palm, Rainer, Hans Hellendoorn, and Dimiter Driankov. "Model Based Design of Takagi—Sugeno FLCs." In Model Based Fuzzy Control, 117–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03401-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sakizlis, Vassilis, and Michael C. Georgiadis. "Integration of Design and Control." In Multi-Parametric Model-Based Control, 133–71. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527631230.ch6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Irwin, George W., Adrian McKernan, and Jian Chen. "Co-design of IEEE 802.11 Based Control Systems." In Wireless Networking Based Control, 301–22. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7393-1_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Albertos, Pedro. "Model-based Iterative Control Design." In Iterative Identification and Control, 121–42. London: Springer London, 2002. http://dx.doi.org/10.1007/978-1-4471-0205-2_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Baranyi, Péter. "TP Model Based Control Design." In TP-Model Transformation-Based-Control Design Frameworks, 103–15. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19605-3_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Control-based design":

1

Albertos, P., A. Esparza, and J. Romero. "Model-based iterative control design." In Proceedings of 2000 American Control Conference (ACC 2000). IEEE, 2000. http://dx.doi.org/10.1109/acc.2000.878673.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lin, C. A., and S. H. Chen. "Optimization-based control system design." In 29th IEEE Conference on Decision and Control. IEEE, 1990. http://dx.doi.org/10.1109/cdc.1990.204067.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Field, R. V., and L. A. Bergman. "Reliability-based covariance control design." In Proceedings of 16th American CONTROL Conference. IEEE, 1997. http://dx.doi.org/10.1109/acc.1997.611745.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Muradore, Riccardo, Davide Quaglia, and Paolo Fiorini. "Model Predictive Control over Delay-Based Differentiated Services Control Networks." In Design Automation and Test in Europe. New Jersey: IEEE Conference Publications, 2013. http://dx.doi.org/10.7873/date.2013.234.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Guo, Jian-guo, and Zhou Jun. "Integrated Guidance-Control System Design Based on ∞ Control." In 2010 International Conference on Electrical and Control Engineering (ICECE 2010). IEEE, 2010. http://dx.doi.org/10.1109/icece.2010.300.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Casu, Mario R., and Paolo Giaccone. "Rate-Based vs Delay-Based Control for DVFS in NoC." In Design, Automation and Test in Europe. New Jersey: IEEE Conference Publications, 2015. http://dx.doi.org/10.7873/date.2015.0613.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kolesnikov, Evgeny. "NDI-Based Flight Control Law Design." In AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-5977.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sacleux, B. "Rotation vector-based attitude control design." In Guidance, Navigation, and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-4311.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bekiaris-Liberis, Nikolaos, Claudio Roncoli, and Markos Papageorgiou. "Predictor-based adaptive cruise control design." In 2016 IEEE Conference on Control Applications (CCA). IEEE, 2016. http://dx.doi.org/10.1109/cca.2016.7587828.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Scampicchio, Anna, Alessandro Chiuso, Simone Formentin, and Gianluigi Pillonetto. "Bayesian Kernel-Based Linear Control Design." In 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019. http://dx.doi.org/10.1109/cdc40024.2019.9029466.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Control-based design":

1

Polak, Elijah. Optimization-Based Design of Control Systems. Fort Belvoir, VA: Defense Technical Information Center, February 1987. http://dx.doi.org/10.21236/ada182529.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Polak, Elijah. Optimization-Based Design of Control Systems. Fort Belvoir, VA: Defense Technical Information Center, April 1988. http://dx.doi.org/10.21236/ada196593.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Howie Choset. Design and Sensor-Based COntrol for Hyper-Redundant Mechanisms. Office of Scientific and Technical Information (OSTI), May 2006. http://dx.doi.org/10.2172/882476.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Choset, Howie. Design and Sensor-Based Control for Hyper-Redundant Mechanisms. Office of Scientific and Technical Information (OSTI), June 2002. http://dx.doi.org/10.2172/835406.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Choset, Howie. Design and Sensor-Based Control for Hyper-Redundant Mechanisms. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/835407.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kao, James Y. Direct digital control based building automation system design criteria. Gaithersburg, MD: National Institute of Standards and Technology, 1991. http://dx.doi.org/10.6028/nist.ir.4604.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Polak, Elijah. Research on Optimization-Based Computer-Aided Design of Control Systems. Fort Belvoir, VA: Defense Technical Information Center, October 1988. http://dx.doi.org/10.21236/ada200400.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sastry, Shankar, Thomas Henzinger, and Edward Lee. Integrated Design and Analysis Tools for Software-Based Control Systems. Fort Belvoir, VA: Defense Technical Information Center, July 2005. http://dx.doi.org/10.21236/ada455939.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Smith, Ralph C. Model-Based Compensator and Control Design for High Performance Nonlinear Tranducers. Fort Belvoir, VA: Defense Technical Information Center, March 2004. http://dx.doi.org/10.21236/ada425766.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Song, Yong D. Design, Analysis and Simulation of Memory-Based Control Algorithms for Dual Range Missiles. Fort Belvoir, VA: Defense Technical Information Center, February 2002. http://dx.doi.org/10.21236/ada400121.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії