Добірка наукової літератури з теми "Deep space tracking"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Deep space tracking".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Deep space tracking":

1

Genova, Antonio, and Flavio Petricca. "Deep-Space Navigation with Intersatellite Radio Tracking." Journal of Guidance, Control, and Dynamics 44, no. 5 (May 2021): 1068–79. http://dx.doi.org/10.2514/1.g005610.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Davarian, Faramaz, and Luitjens Popken. "Technical Advances in Deep-Space Communications and Tracking." Proceedings of the IEEE 95, no. 11 (November 2007): 2108–10. http://dx.doi.org/10.1109/jproc.2007.906610.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bocanegra-Bahamón, T. M., G. Molera Calvés, L. I. Gurvits, D. A. Duev, S. V. Pogrebenko, G. Cimò, D. Dirkx, and P. Rosenblatt. "Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique: A test case of the Mars Express Phobos Flyby." Astronomy & Astrophysics 609 (January 2018): A59. http://dx.doi.org/10.1051/0004-6361/201731524.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Context. Closed-loop Doppler data obtained by deep space tracking networks, such as the NASA Deep Space Network (DSN) and the ESA tracking station network (Estrack), are routinely used for navigation and science applications. By shadow tracking the spacecraft signal, Earth-based radio telescopes involved in the Planetary Radio Interferometry and Doppler Experiment (PRIDE) can provide open-loop Doppler tracking data only when the dedicated deep space tracking facilities are operating in closed-loop mode. Aims. We explain the data processing pipeline in detail and discuss the capabilities of the technique and its potential applications in planetary science. Methods. We provide the formulation of the observed and computed values of the Doppler data in PRIDE tracking of spacecraft and demonstrate the quality of the results using an experiment with the ESA Mars Express spacecraft as a test case. Results. We find that the Doppler residuals and the corresponding noise budget of the open-loop Doppler detections obtained with the PRIDE stations compare to the closed-loop Doppler detections obtained with dedicated deep space tracking facilities.
4

Gawronski, W. "Predictive Controller and Estimator for NASA Deep Space Network Antennas." Journal of Dynamic Systems, Measurement, and Control 116, no. 2 (June 1, 1994): 241–48. http://dx.doi.org/10.1115/1.2899216.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper presents a modified output prediction procedure, and a new controller design based on the predictive control law. Also, a predictive estimator is developed for implementing the controller. The predictive controller was designed and simulated for tracking control of the NASA Deep Space Network 70-m antenna. Simulation results show significant improvement in tracking performance compared to the linear quadratic controller and estimator presently in use.
5

Teitelbaum, Lawrence, Walid Majid, Manuel M. Franco, Daniel J. Hoppe, Shinji Horiuchi, and T. Joseph W. Lazio. "Precision Pulsar Timing with NASA's Deep Space Network." Proceedings of the International Astronomical Union 11, A29B (August 2015): 367–69. http://dx.doi.org/10.1017/s174392131600555x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractMillisecond pulsars (MSPs) are a class of radio pulsars with extremely stable rotation. Their excellent timing stability can be used to study a wide variety of astrophysical phenomena. In particular, a large sample of these pulsars can be used to detect low-frequency gravitational waves. We have developed a precision pulsar timing backend for the NASA Deep Space Network (DSN), which will allow the use of short gaps in tracking schedules to time pulses from an ensemble of MSPs. The DSN operates clusters of large dish antennas (up to 70-m in diameter), located roughly equidistant around the Earth, for communication and tracking of deep-space spacecraft. The backend system will be capable of removing entirely the dispersive effects of propagation of radio waves through the interstellar medium in real-time. We will describe our development work, initial results, and prospects for future observations over the next few years.
6

Mukai, R., V. A. Vilnrotter, P. Arabshahi, and V. Jamnejad. "Adaptive acquisition and tracking for deep space array feed antennas." IEEE Transactions on Neural Networks 13, no. 5 (September 2002): 1149–62. http://dx.doi.org/10.1109/tnn.2002.1031946.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chen, Yijiang, Hamid Hemmati, and Gerry G. Ortiz. "Feasibility of infrared Earth tracking for deep-space optical communications." Optics Letters 37, no. 1 (December 24, 2011): 73. http://dx.doi.org/10.1364/ol.37.000073.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Johnston, Mark D., Daniel Tran, Belinda Arroyo, Sugi Sorensen, Peter Tay, Butch Carruth, Adam Coffman, and Mike Wallace. "Automated Scheduling for NASA's Deep Space Network." AI Magazine 35, no. 4 (December 22, 2014): 7–25. http://dx.doi.org/10.1609/aimag.v35i4.2552.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This article describes the DSN scheduling wngine (DSE) component of a new scheduling system being deployed for NASA's deep space network. The DSE provides core automation functionality for scheduling the network, including the interpretation of scheduling requirements expressed by users, their elaboration into tracking passes, and the resolution of conflicts and constraint violations. The DSE incorporates both systematic search and repair-based algorithms, used for different phases and purposes in the overall system. It has been integrated with a web application which provides DSE functionality to all DSN users through a standard web browser, as part of a peer-to-peer schedule negotiation process for the entire network. The system has been deployed operationally and is in routine use, and is in the process of being extended to support long-range planning and forecasting, and near-real-time scheduling.
9

Yamamoto, Zen-icji, Haruto Hirosawa, and Tamiya Nomura. "Dual Speed PN Ranging System for Tracking of Deep Space Probes." IEEE Transactions on Aerospace and Electronic Systems AES-23, no. 4 (July 1987): 519–27. http://dx.doi.org/10.1109/taes.1987.310885.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Davarian, Faramaz, and Luitjens Popken. "Special Issue on Technical Advances in Deep-Space Communications and Tracking." Proceedings of the IEEE 95, no. 10 (October 2007): 1898–901. http://dx.doi.org/10.1109/jproc.2007.905981.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Deep space tracking":

1

Graziani, Alberto <1980&gt. "Troposphere Calibration Techniques for Deep Space Probe Tracking." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/3023/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ground-based Earth troposphere calibration systems play an important role in planetary exploration, especially to carry out radio science experiments aimed at the estimation of planetary gravity fields. In these experiments, the main observable is the spacecraft (S/C) range rate, measured from the Doppler shift of an electromagnetic wave transmitted from ground, received by the spacecraft and coherently retransmitted back to ground. If the solar corona and interplanetary plasma noise is already removed from Doppler data, the Earth troposphere remains one of the main error sources in tracking observables. Current Earth media calibration systems at NASA’s Deep Space Network (DSN) stations are based upon a combination of weather data and multidirectional, dual frequency GPS measurements acquired at each station complex. In order to support Cassini’s cruise radio science experiments, a new generation of media calibration systems were developed, driven by the need to achieve the goal of an end-to-end Allan deviation of the radio link in the order of 3×〖10〗^(-15) at 1000 s integration time. The future ESA’s Bepi Colombo mission to Mercury carries scientific instrumentation for radio science experiments (a Ka-band transponder and a three-axis accelerometer) which, in combination with the S/C telecommunication system (a X/X/Ka transponder) will provide the most advanced tracking system ever flown on an interplanetary probe. Current error budget for MORE (Mercury Orbiter Radioscience Experiment) allows the residual uncalibrated troposphere to contribute with a value of 8×〖10〗^(-15) to the two-way Allan deviation at 1000 s integration time. The current standard ESA/ESTRACK calibration system is based on a combination of surface meteorological measurements and mathematical algorithms, capable to reconstruct the Earth troposphere path delay, leaving an uncalibrated component of about 1-2% of the total delay. In order to satisfy the stringent MORE requirements, the short time-scale variations of the Earth troposphere water vapor content must be calibrated at ESA deep space antennas (DSA) with more precise and stable instruments (microwave radiometers). In parallel to this high performance instruments, ESA ground stations should be upgraded to media calibration systems at least capable to calibrate both troposphere path delay components (dry and wet) at sub-centimetre level, in order to reduce S/C navigation uncertainties. The natural choice is to provide a continuous troposphere calibration by processing GNSS data acquired at each complex by dual frequency receivers already installed for station location purposes. The work presented here outlines the troposphere calibration technique to support both Deep Space probe navigation and radio science experiments. After an introduction to deep space tracking techniques, observables and error sources, in Chapter 2 the troposphere path delay is widely investigated, reporting the estimation techniques and the state of the art of the ESA and NASA troposphere calibrations. Chapter 3 deals with an analysis of the status and the performances of the NASA Advanced Media Calibration (AMC) system referred to the Cassini data analysis. Chapter 4 describes the current release of a developed GNSS software (S/W) to estimate the troposphere calibration to be used for ESA S/C navigation purposes. During the development phase of the S/W a test campaign has been undertaken in order to evaluate the S/W performances. A description of the campaign and the main results are reported in Chapter 5. Chapter 6 presents a preliminary analysis of microwave radiometers to be used to support radio science experiments. The analysis has been carried out considering radiometric measurements of the ESA/ESTEC instruments installed in Cabauw (NL) and compared with the requirements of MORE. Finally, Chapter 7 summarizes the results obtained and defines some key technical aspects to be evaluated and taken into account for the development phase of future instrumentation.
2

Wittrock, Jason M. "Free-Electron Laser (FEL) utilization in space applications (ship-borne pointing accuracy, deep-space communications, and orbital debris tracking)." Monterey, California. Naval Postgraduate School, 2011. http://hdl.handle.net/10945/10710.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The U.S. Navy is currently conducting research which will support the production of a MW-class free-electron laser (FEL). The Navy's end-state goal is to design and implement a defense system capable of destroying a fast-flying, anti-ship cruise missile (ASCM) target. To this end, the necessity of ensuring accurate pointing control of the beam is required. The first part of this thesis focuses on the U.S. Navy's desired end-state and investigates the ability of feedback and feed-forward control methods to provide improved pointing accuracy to a beam director mounted on a naval vessel similar in size to that of a Ticonderoga-class cruiser while traversing through various sea-states. The second part of this thesis examines the feasibility of employing the FEL as a means of deep-space (Mars and beyond) communication and orbital debris removal and tracking of objects in low-earth orbit (LEO).
3

Mahmud, Sadab. "Development and Simulation of Maximum Power Point Tracking (MPPT) Controller with Ripple Correlation Control (RCC) for Deep Space Spacecraft." University of Toledo / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1588686169167826.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Di, Ruscio Andrea. "Utilisation des données de radio science pour la construction d’éphémérides planétaires." Thesis, Université Côte d'Azur, 2021. http://www.theses.fr/2021COAZ4031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le thème central de la thèse concerne l’utilisation des données de radio tracking pour le développement d’éphémérides planétaires, en particulier, dans deux cas : 1) analyse de données de navigation de la mission Cassini pour améliorer les éphémérides de Saturne et augmenter notre connaissance du système solaire externe ; 2) simulation des données radio de la mission ESA BepiColombo collectées durant la phase orbital à Mercure, pour évaluer leur contribution sur le développement des éphémérides planétaire de l’Intégrateur Numérique Planétaire de l’Observatoire de Paris (INPOP).Le premier sujet de recherche essaie de traiter les données de navigation de la sonde Cassini autour de Saturne en utilisant la connaissance mise à jour du système Saturnien : éphémérides précises pour les lunes du système et caractérisation de la gravité de Titan et des autres lunes principales.Ça permis la création des points normaux plus précis, capable de contraindre l’orbite de Saturne pour 13 ans (la moitié de sa révolution autour du Soleil) au niveau des mètres et de donner précieux informations sur le système solaire externe, en particulier sur la masse de la Kuiper belt et sur la possible position de P9. Les nouvelles données montrent une réduction de l’incertitude d’un facteur 5 en respect aux analyses précédentes.La deuxième partie de la thèse se concentre sur la production des simulations réalistes des données radio que le Mercury Orbiter Radio-science Experiment (MORE) de la sonde BepiColombo mesurera durant la phase scientifique de sa mission autour de Mercure.Des points normaux sont après produits avec une incertitude déduite de la matrice de covariance de l’état de la sonde estimé en utilisant ces données simulées.Ces points sont donc traités par le weighted-least square estimateur d’INPOP pour quantifier l’impact que les données de BepiColombo auront sur le développement des éphémérides planétaires, en particulier pour contraindre l’orbite de Mercure et des paramètres relativistes
The central theme of the thesis concerns the exploitation of radio tracking measurements for the development of planetary ephemerides, in particular, applied on two research topics: 1) the analysis of navigation data of Cassini mission to enhance the ephemeris of Saturn and increase our knowledge of the outer solar system; 2) the simulation of BepiColombo measurements collected during the orbital phase at Mercury, for assessing their contribution on the Intégrateur Numérique Planétaire de l’Observatoire de Paris (INPOP) planetary ephemerides.The first research aims at reprocessing Cassini radio tracking data by exploiting the current knowledge of the Saturnian system developed throughout the mission, i.e. the availability of accurate satellite ephemerides and precise gravity solutions for Saturn, Titan and the other major moons. This allows the production of more precise normal points, which are able to constrain the orbit of the planet at meters-level for 13 years (almost half of its revolution) and to provide invaluable insights on the mass of the Kuiper belt. The results show a reduction of a factor 5 on normal points uncertainties with respect to previous analyses, providing tighter constraints on the acceptance regions of planet 9.The second research topic focuses on the production of realistic normal points derived from the end-to-end simulation of BepiColombo Mercury Orbiter Radio-science Experiment (MORE). The uncertainties of the normal points are deduced from the mapped covariance of the spacecraft state. The derived measurements are then processed with the INPOP weighted-least squares filter to quantify the achievable constraints on ephemerides and relativistic parameters

Книги з теми "Deep space tracking":

1

Thornton, Catherine L., and James S. Border. Radiometric Tracking Techniques for Deep Space Navigation. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2003. http://dx.doi.org/10.1002/0471728454.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Thornton, Catherine L., and James S. Border. Radiometric Tracking Techniques for Deep Space Navigation. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2003. http://dx.doi.org/10.1002/0471728454.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tang, Geshi. Shen kong ce kong wu xian dian ce liang ji shu: Radiometric measuring techniques for deep space navigation. 8th ed. Beijing Shi: Guo fang gong ye chu ban she, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yu, Zhijian. Shen kong ce kong tong xin xi tong. 8th ed. Beijing Shi: Guo fang gong ye chu ban she, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Li, Haitao, Weiren Wu, and Guangliang Dong. Shen kong ce kong tong xin xi tong gong cheng yu ji shu: Engineering and Technology of Deep Space TT&C System. 8th ed. Beijing Shi: Ke xue chu ban she, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Moyer, Theodore D. Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation. New York: John Wiley & Sons, Ltd., 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Thornton, Catherine L., and James S. Border. Radiometric Tracking Techniques for Deep-Space Navigation (Deep-Space Communications and Navigation Series). Wiley-Interscience, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Thornton, Catherine L., and James S. Border. Radiometric Tracking Techniques for Deep-Space Navigation. Wiley & Sons, Incorporated, John, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Radiometric Tracking Techniques for Deep-Space Navigation. New York: John Wiley & Sons, Ltd., 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Moyer, Theodore D. Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation (JPL Deep-Space Communications and Navigation Series). Wiley-Interscience, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Deep space tracking":

1

Lowe, S. T., and R. N. Treuhaft. "Applications of Few-Hundred Microarcsecond VLBI Astrometry: Planetary Relativistic Deflection, PPN Gamma Determination and Deep-Space Tracking." In Developments in Astrometry and Their Impact on Astrophysics and Geodynamics, 145–49. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1711-1_28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

"VLBI Tracking Observables." In Radiometric Tracking Techniques for Deep Space Navigation, 47–62. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471728454.ch4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

"Range and Doppler Tracking Observables." In Radiometric Tracking Techniques for Deep Space Navigation, 9–46. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471728454.ch3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

"Future Directions in Radiometric Tracking." In Radiometric Tracking Techniques for Deep Space Navigation, 63–75. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471728454.ch5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

"Earth-Based Tracking and Navigation Overview." In Radiometric Tracking Techniques for Deep Space Navigation, 3–8. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471728454.ch2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

"Acronyms." In Radiometric Tracking Techniques for Deep Space Navigation, 79–80. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471728454.acron.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

"Introduction." In Radiometric Tracking Techniques for Deep Space Navigation, 1–2. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471728454.ch1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

"Frontmatter." In Radiometric Tracking Techniques for Deep Space Navigation, i—xi. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471728454.fmatter.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

"Glossary." In Radiometric Tracking Techniques for Deep Space Navigation, 77–78. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471728454.gloss.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

"Index." In Radiometric Tracking Techniques for Deep Space Navigation, 81–85. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471728454.index.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Deep space tracking":

1

Alexander, James W., Sukhan Lee, and Chien-Chung Chen. "Pointing and tracking concepts for deep-space missions." In Optoelectronics '99 - Integrated Optoelectronic Devices, edited by G. Stephen Mecherle. SPIE, 1999. http://dx.doi.org/10.1117/12.346185.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Win, Moe Z. "Estimation And Tracking For Deep-Space Optical Communications." In OE/LASE '89, edited by Monte Ross and Richard J. Temkin. SPIE, 1989. http://dx.doi.org/10.1117/12.951698.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Amoozegar, Farid, and Charles Ruggier. "Neural-network-based satellite tracking for deep space applications." In AeroSense 2003, edited by Firooz A. Sadjadi. SPIE, 2003. http://dx.doi.org/10.1117/12.488688.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Farr, William, Suzana Sburlan, Adit Sahasrabudhe, and Kevin M. Birnbaum. "Deep space acquisition and tracking with single photon detector arrays." In 2011 International Conference on Space Optical Systems and Applications (ICSOS). IEEE, 2011. http://dx.doi.org/10.1109/icsos.2011.5783654.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kurtik, Susan, and Jeff Berner. "Tracking, Telemetry and Command Consolidation in NASA's Deep Space Network." In SpaceOps 2002 Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-t2-18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ceniceros, Juan M., Christian D. Jeppesen, and Gerry G. Ortiz. "Vibration platform testbed for deep-space aquisition, tracking, and pointing." In Photonics West 2001 - LASE, edited by G. Stephen Mecherle. SPIE, 2001. http://dx.doi.org/10.1117/12.430796.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chen, Chien-Chung, Muthu Jeganathan, and James R. Lesh. "Spatial acquisition and tracking for deep-space optical communication packages." In Optics, Electro-Optics, and Laser Applications in Science and Engineering, edited by David L. Begley and Bernard D. Seery. SPIE, 1991. http://dx.doi.org/10.1117/12.43757.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tsou, Haiping, Caroline S. Racho, and Tsun-Yee Yan. "Extended-image spatial tracking technique for deep-space optical downlinks." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by Robert K. Tyson and Robert Q. Fugate. SPIE, 1999. http://dx.doi.org/10.1117/12.363565.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mohan, Swati, Oscar Alvarez-Salazar, Kevin Birnbaum, Abhijit Biswas, William Farr, Hamid Hemmati, Shawn Johnson, et al. "Pointing, acquisition, and tracking architecture tools for deep-space optical communications." In SPIE LASE, edited by Hamid Hemmati and Don M. Boroson. SPIE, 2014. http://dx.doi.org/10.1117/12.2042704.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Birnbaum, Kevin M., Adit Sahasrabudhe, and William H. Farr. "Separating and tracking multiple beacon sources for deep space optical communications." In SPIE LASE, edited by Hamid Hemmati. SPIE, 2010. http://dx.doi.org/10.1117/12.843268.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії