Статті в журналах з теми "Dose area product"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Dose area product.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Dose area product".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Petoussi-Henss, H., W. Panzer, M. Zankl, and G. Drexler. "Dose-Area Product and Body Doses." Radiation Protection Dosimetry 57, no. 1-4 (January 1, 1995): 363–66. http://dx.doi.org/10.1093/rpd/57.1-4.363.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Petoussi-Henss, H., W. Panzer, M. Zankl, and G. Drexler. "Dose-Area Product and Body Doses." Radiation Protection Dosimetry 57, no. 1-4 (January 1, 1995): 363–66. http://dx.doi.org/10.1093/oxfordjournals.rpd.a082561.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Choi, Jae-Ho, Gu-Jun Kang, and Seo-Goo Chang. "Comparison on the Dosimetry of TLD and PLD by Dose Area Product." Journal of the Korea Contents Association 12, no. 3 (March 28, 2012): 244–50. http://dx.doi.org/10.5392/jkca.2012.12.03.244.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sakamoto, Hajime, Hiroshi Kobayashi, Hiroaki Ikegawa, Shinji Ohshima, Yoshihito Aikawa, Yoshitomo Sano, and Tsutomu Araki. "Estimation of Operator Dose by Dose Area Product Meter." Japanese Journal of Radiological Technology 62, no. 7 (2006): 951–60. http://dx.doi.org/10.6009/jjrt.62.951.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pillai, A., and M. Jain. "Dose area product measurement in orthopaedic trauma." Radiography 10, no. 2 (May 2004): 103–7. http://dx.doi.org/10.1016/j.radi.2004.02.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Crawley, M. T., S. Mutch, M. Nyekiova, C. Reddy, and H. Weatherburn. "Calibration frequency of dose–area product meters." British Journal of Radiology 74, no. 879 (March 2001): 259–61. http://dx.doi.org/10.1259/bjr.74.879.740259.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

McDonald, S., C. J. Martin, C. L. Darragh, and D. T. Graham. "Dose–area product measurements in paediatric radiography." British Journal of Radiology 69, no. 820 (April 1996): 318–25. http://dx.doi.org/10.1259/0007-1285-69-820-318.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Vano, E., L. Gonzalez, J. I. Ten, J. M. Fernandez, E. Guibelalde, and C. Macaya. "Skin dose and dose–area product values for interventional cardiology procedures." British Journal of Radiology 74, no. 877 (January 2001): 48–55. http://dx.doi.org/10.1259/bjr.74.877.740048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Faulkner, K., H. P. Busch, P. Cooney, J. F. Malone, N. W. Marshall, and D. J. Rawlings. "An International Intercomparison of Dose-Area Product Meters." Radiation Protection Dosimetry 43, no. 1-4 (October 1, 1992): 131–34. http://dx.doi.org/10.1093/rpd/43.1-4.131.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Machado, S. O., H. Schelin, V. Denyak, D. Filipov, A. Bunick, J. Ledesma, and S. A. Paschuk. "Dose-area product in pediatric barium meal procedures." Radiation Physics and Chemistry 155 (February 2019): 53–55. http://dx.doi.org/10.1016/j.radphyschem.2018.07.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Poppe, B., H. K. Looe, A. Pfaffenberger, N. Chofor, F. Eenboom, M. Sering, A. Rühmann, A. Poplawski, and K. Willborn. "Dose-area product measurements in panoramic dental radiology." Radiation Protection Dosimetry 123, no. 1 (August 12, 2006): 131–34. http://dx.doi.org/10.1093/rpd/ncl090.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Faulkner, K., H. P. Busch, P. Cooney, J. F. Malone, N. W. Marshall, and D. J. Rawlings. "An International Intercomparison of Dose-Area Product Meters." Radiation Protection Dosimetry 43, no. 1-4 (October 1, 1992): 131–34. http://dx.doi.org/10.1093/oxfordjournals.rpd.a081349.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Aly, Antar E., Ibrahim M. Duhaini, Samia M. Manaa, Sayed M. Tarique, Shehim E. Kuniyil, and Huda M. Al Naemi. "Patient Peak Skin Dose and Dose Area Product from Interventional Cardiology Procedures." International Journal of Medical Physics, Clinical Engineering and Radiation Oncology 04, no. 01 (2015): 7–12. http://dx.doi.org/10.4236/ijmpcero.2015.41002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Vano, E., C. Prieto, J. M. Fernandez, L. Gonzalez, M. Sabate, and C. Galvan. "Skin dose and dose–area product values in patients undergoing intracoronary brachytherapy." British Journal of Radiology 76, no. 901 (January 2003): 32–38. http://dx.doi.org/10.1259/bjr/33961719.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Efthymiou, Fotios O., Vasileios I. Metaxas, Christos P. Dimitroukas, Stavros K. Kakkos, and George S. Panayiotakis. "KERMA-AREA PRODUCT, ENTRANCE SURFACE DOSE AND EFFECTIVE DOSE IN ABDOMINAL ENDOVASCULAR ANEURYSM REPAIR." Radiation Protection Dosimetry 194, no. 2-3 (May 2021): 121–34. http://dx.doi.org/10.1093/rpd/ncab082.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract This study aims to evaluate patient radiation dose during fluoroscopically guided endovascular aneurysm repair (EVAR) procedures. Fluoroscopy time (FT) and kerma-area product (KAP) were recorded from 87 patients that underwent EVAR procedures with a mobile C-arm fluoroscopy system. Effective dose (ED) and organs’ doses were calculated utilising appropriate conversion coefficients based on the recorded KAP values. Entrance surface dose (ESD) was calculated based on KAP values and technical parameters. The mean FT was 22.7 min (range 6.4–76.8 min), resulting in a mean KAP of 36.6 Gy cm2 (range 2.0–167.8 Gy cm2), a mean ED of 6.2 mSv (range 0.3–28.5 mSv) and a mean ESD of 458 mGy (range 26–2098 mGy). The corresponding median values were 17.4 min, 25.6 Gy cm2, 4.4 mSv and 320 mGy. The threshold of 2 Gy for skin erythema was exceeded in two procedures for a focus-to-skin distance (FSD) of 40 cm and six procedures when an FSD of 30 cm was considered. The highest doses absorbed by the adrenals, kidneys, spleen and pancreas and ranged between 3.7 and 313.3 mGy (average 66.8 mGy), 3.3 and 285.1 mGy (average 60.8 mGy), 1.3 and 111.1 mGy (average 23.7 mGy), 1.1 and 92.1 mGy (average 19.6 mGy), respectively. A wide range of patient doses was reported in the literature. The radiation dose received by the patients was comparative or lower than most of the previously reported values. However, higher doses can be revealed due to the X-ray system’s non-optimum use and extended FTs, mainly affected by complex clinical conditions, patients’ body habitus and vascular surgeon experience. The large variation of patient doses highlights the potential to optimise the EVAR procedure by considering the balance between the radiation dose and the required image quality. Additional studies need to be conducted in increasing the vascular surgeons’ awareness regarding patient dose and radiation protection issues during EVAR procedures.
16

Tierris, C. E. "Dose area product reference levels in dental panoramic radiology." Radiation Protection Dosimetry 111, no. 3 (July 20, 2004): 283–87. http://dx.doi.org/10.1093/rpd/nch341.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Mini, R. L., B. Schmid, P. Schneeberger, and P. Vock. "Dose-Area Product Measurements During Angiographic X Ray Procedures." Radiation Protection Dosimetry 80, no. 1 (November 1, 1998): 145–48. http://dx.doi.org/10.1093/oxfordjournals.rpd.a032490.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Owasirikul, Wiwat, Woranut Iampa, Tipvimol Meechai, Khaisang Chousangsuntorn, and Napapong Pongnapang. "Estimating Entrance Skin Dose of Digital Radiography Examination Using Displayed Dose Area Product." Songklanagarind Medical Journal 35, no. 4 (December 28, 2017): 343. http://dx.doi.org/10.31584/smj.2017.35.4.750.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Objective: To estimate entrance skin dose (ESD) of digital radiography (DR) examination using displayed dose area product (DAP)Material and Method: The functional relation between calculated ESD using x-ray tube output principle and displayed DAP were investigated. The displayed DAP was obtained from whole body phantom which underwent seven projections: skull anteroposterior (AP), skull lateral (Lat), chest posteroanterior (PA), abdomen AP, pelvis AP, lumbar spine AP and l umbar spine Lat. The estimating results were analyzed and compared with two other methods using one-way analysis of variance.Results: The high relation between the ESD calculated and the displayed DAP were founded with simple equation: ESD=0.0017.DAP+0.1546 (R2=0.88) The mean ESD estimated performed by DR examination with automatic exposure control (AEC) mode using our method, Mcparland method and Kisilewicz method were 1.07, 1.13 and 0.89 whereas without AEC mode were 3.25, 3.45 and 2.60 respectively. There was provided no statistically significant difference between our approach and two other methods (p-value>0.010).Conclusion: The displayed DAP can be used to estimate the ESD.
19

Araki, K., S. Patil, A. Endo, and T. Okano. "Dose indices in dental cone beam CT and correlation with dose–area product." Dentomaxillofacial Radiology 42, no. 5 (May 2013): 20120362. http://dx.doi.org/10.1259/dmfr.20120362.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Servomaa, A., and J. Karppinen. "The Dose-area Product and Assessment of the Occupational Dose in Interventional Radiology." Radiation Protection Dosimetry 96, no. 1 (July 1, 2001): 235–36. http://dx.doi.org/10.1093/oxfordjournals.rpd.a006590.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Kisielewicz, K., A. Truszkiewicz, S. Wach, and M. Wasilewska–Radwańska. "Evaluation of dose area product vs. patient dose in diagnostic X-ray units." Physica Medica 27, no. 2 (April 2011): 117–20. http://dx.doi.org/10.1016/j.ejmp.2010.07.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

van de Putte, S., F. Verhaegen, Y. Taeymans, and H. Thierens. "Correlation of patient skin doses in cardiac interventional radiology with dose-area product." British Journal of Radiology 73, no. 869 (May 2000): 504–13. http://dx.doi.org/10.1259/bjr.73.869.10884747.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Wade, J. P. "Estimation of effective dose in diagnostic radiology from entrance surface dose and dose-area product measurements." British Journal of Radiology 71, no. 849 (September 1998): 994–95. http://dx.doi.org/10.1259/bjr.71.849.10195022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Milatovic, Aleksandra, Vesna Spasic-Jokic, and Slobodan Jovanovic. "Patient dose measurement and dose reduction in chest radiography." Nuclear Technology and Radiation Protection 29, no. 3 (2014): 220–25. http://dx.doi.org/10.2298/ntrp1403220m.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Investigations presented in this paper represent the first estimation of patient doses in chest radiography in Montenegro. In the initial stage of our study, we measured the entrance surface air kerma and kerma area product for chest radiography in five major health institutions in the country. A total of 214 patients were observed. We reported the mean value, minimum and third quartile values, as well as maximum values of surface air kerma and kerma area product of patient doses. In the second stage, the possibilities for dose reduction were investigated. Mean kerma area product values were 0.8 ? 0.5 Gycm2 for the posterior-anterior projection and 1.6 ? 0.9 Gycm2 for the lateral projection. The max/min ratio for the entrance surface air kerma was found to be 53 for the posterior-anterior projection and 88 for the lateral projection. Comparing the results obtained in Montenegro with results from other countries, we concluded that patient doses in our medical centres are significantly higher. Changes in exposure parameters and increased filtration contributed to a dose reduction of up to 36% for posterior-anterior chest examinations. The variability of the estimated dose values points to a significant space for dose reduction throughout the process of radiological practice optimisation.
25

Wright, T., J. Lye, D. Butler, A. Stevenson, J. Livingstone, and J. Crosbie. "EP-1520: Uncertainties in film measurements of dose area product." Radiotherapy and Oncology 119 (April 2016): S704. http://dx.doi.org/10.1016/s0167-8140(16)32770-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Jung, Jae Eun, Do-Yeon Won, Hong-Moon Jung, and Dae Cheol Kweon. "Calibration Examination of Dose Area Product Meters using X-ray." Journal of the Korean Society of Radiology 11, no. 1 (February 28, 2017): 37–42. http://dx.doi.org/10.7742/jksr.2017.11.1.37.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Chambers, I. R., K. Faulkner, and N. W. Marshall. "Recording dose-area product information using an electronic personal organiser." Journal of Radiological Protection 11, no. 2 (June 1991): 137–38. http://dx.doi.org/10.1088/0952-4746/11/2/006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Vlastou, E., J. Antonakos, E. Efstathopoulos, N. Kafkas, N. Makris, C. Besios, and P. Raptou. "A comparison of dose area product from different angiography procedures." Physica Medica 32 (September 2016): 305. http://dx.doi.org/10.1016/j.ejmp.2016.07.160.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

MATSUBARA, KOSUKE, KICHIRO KOSHIDA, ATSUSHI FUKUDA, YOSHINORI UOYAMA, HIROJI IIDA, and TAKASHI MIZUSHIMA. "Creation and Clinical Application of Real-time Dose Monitor Using Dose Area Product Meter." Japanese Journal of Radiological Technology 60, no. 5 (2004): 719–24. http://dx.doi.org/10.6009/jjrt.kj00000922441.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

McParland, B. J. "Entrance skin dose estimates derived from dose-area product measurements in interventional radiological procedures." British Journal of Radiology 71, no. 852 (December 1998): 1288–95. http://dx.doi.org/10.1259/bjr.71.852.10319003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Williams, J. R. "Scatter dose estimation based on dose–area product and the specification of radiation barriers." British Journal of Radiology 69, no. 827 (November 1996): 1032–37. http://dx.doi.org/10.1259/0007-1285-69-827-1032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Raubenheimer, R., B. Spangenberg, G. Van Jaarsveld, A. Koller, C. De Vries, C. P. Herbst, C. A. Willemse, and G. Joubert. "Do dose area product meter measurements reflect radiation doses absorbed by health care workers?" South African Journal of Radiology 8, no. 2 (June 9, 2004): 24. http://dx.doi.org/10.4102/sajr.v8i2.129.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This study determined the correlation between radiation doses absorbed by health care workers and dose area product meter (DAP) measurements at Universitas Hospital, Bloemfontein. The DAP is an instrument which accurately measures the radiation emitted from the source. The study included the interventional radiologists, radiographers and nurses associated with radiological intervention procedures during the period 1 August 2003 - 31 August 2003. The amount of radiation produced during every procedure was measured by a dose area product meter (DAP) and routinely recorded. The absorbed doses received by health care workers were measured using a thermoluminescent dose meter (TLD). The TLDs were analysed and recorded at the end of each week. Health care workers wore TLDs on the following areas: forehead, thyroid (attached under thyroid guard), and abdomen (worn under lead jacket). A strong positive correlation (r = 0.9, p = 0.0374) was found between the radiographers’ head TLD and DAP meter readings. All other correlations between TLD and DAP readings were not statistically significant. Strong positive correlations were found between the TLD readings of the radiologists’ and nurses’ bodies, the nurses’ and radiographers’ bodies and the radiologists’ and the radiographers’ bodies, all of which were statistically significant.
33

McCann, Mark R., Philippa A. Rust, Katie Brown, and David Lawrie. "Radiation exposure of patients during mini C-arm use: an audit in 2032 procedures." Journal of Hand Surgery (European Volume) 44, no. 7 (May 16, 2019): 734–37. http://dx.doi.org/10.1177/1753193419848575.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This study aimed to audit large quantities of mini C-arm data used in hand and wrist surgery and to analyse what effect the type and anatomical location of procedures had on screening time and dose area product. Of a total of 2032 procedures, the median screening time was 11 seconds and median dose area product was 0.75 cGycm2. The third quartile value for screening time was 23 seconds and dose area product was 1.62 cGycm2. The median screening time for closed procedures was 7 seconds and the dose area product was 0.57 cGycm2. The median screening time for open surgery was 23 seconds with a median dose area product of 1.45 cGycm2. The data for steroid injection procedures were similar to those of the closed procedures, with a median screening time of 7 seconds and dose area product of 0.45 cGycm2. We found no significant differences in the screening time or dose area product between procedures on the wrist and forearm compared with the hand and digits. Level of evidence: III
34

Yakoumakis, E., I. A. Tsalafoutas, D. Nikolaou, I. Nazos, E. Koulentianos, and Ch Proukakis. "Differences in effective dose estimation from dose–area product and entrance surface dose measurements in intravenous urography." British Journal of Radiology 74, no. 884 (August 2001): 727–34. http://dx.doi.org/10.1259/bjr.74.884.740727.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Stanišić, Michał-Goran, Natalia Majewska, Marcin Makałowski, Robert Juszkat, Magdalena Błaszak, and Wacław Majewski. "Patient radiation exposure during carotid artery stenting." Vascular 23, no. 2 (June 25, 2014): 154–60. http://dx.doi.org/10.1177/1708538114540641.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Objectives The main purpose of this study was to document the radiation doses to patients during carotid stenting. Material and method Fluoroscopy and exposure time, air kerma and dose-area product during carotid artery stenting in 160 patients were retrospectively reviewed with regard to body mass index, degree of stenosis and use of cerebral protection devices. Results Total air kerma was lower than 0.5 Gy in 80%, 0.5–1 Gy in 17% and higher than 1 Gy (maximum 1.2) in 3% of patients. Mean total dose-area product value for carotid stenting was 54 Gy cm2. The mean air kerma (fluoroscopy), air kerma (exposure), total air kerma and dose-area product (fluoroscopy), dose-area product (exposure), total dose-area product of patients with body mass index within the range 25–29.9 and with body mass index >30 were significantly increased compared to that of patients with body mass index 18–24.9 (H = 40.2, df = 2; p = 0.0000001 and p = 0.000003, respectively). Conclusion Carotid artery stenting is a relatively safe radiological procedure in terms of the radiation dose acquired by the patient. The main factors contributing to possible radiation overdosing are body mass index value and complexity of the carotid lesion. Proper preoperative planning in obese and complicated patients may reduce the fluoroscopy time and contribute to reduced dose acquisition.
36

Ogden, K., and W. Huda. "SU-FF-I-67: Converting CT Dose Length Product (DLP) to Kerma Area Product (KAP)." Medical Physics 36, no. 6Part3 (June 2009): 2450. http://dx.doi.org/10.1118/1.3181187.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Lee, Ho-Sun, Seong-Gyu Han, Young-Hoon Roh, Hyun-Jong Lim, Jung-Min Kim, Jong-Uk Kim, Hyun-Sik Chae, and Yong-Su Yoon. "Performance Evaluation of Domestic Prototype Dose Area Product Meter SFT-1." Journal of Radiological Science and Technology 39, no. 3 (September 30, 2016): 435–41. http://dx.doi.org/10.17946/jrst.2016.39.3.19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Kezerashvili, M., D. R. Bednarek, and S. Rudin. "Automatic system for measuring dose - area product (DAP) in ROI fluoroscopy." Physics in Medicine and Biology 42, no. 4 (April 1, 1997): 613–23. http://dx.doi.org/10.1088/0031-9155/42/4/001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Müller, M., R. Heicappell, U. Steiner, E. Merkle, A. J. Aschoff, and K. Miller. "The average dose-area product at intravenous urography in 205 adults." British Journal of Radiology 71, no. 842 (February 1998): 210–12. http://dx.doi.org/10.1259/bjr.71.842.9579185.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Thomas, George, Yushan Li, Robert Y. L. Chu, John Y. Cheung, Feroz Maqbool, Frank Rabe, and G. Scott Burns. "Measurement of Dose-Area Product with GafChromic XR Type R Film." Journal of Applied Clinical Medical Physics 6, no. 3 (August 12, 2005): 122–32. http://dx.doi.org/10.1120/jacmp.2025.25352.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Thomas, George, Yushan Li, Robert Y. L. Chu, John Y. Cheung, Feroz Maqbool, Frank Rabe, and G. Scott Burns. "Measurement of dose-area product with GafChromic XR Type R film." Journal of Applied Clinical Medical Physics 6, no. 3 (June 2005): 122–32. http://dx.doi.org/10.1120/jacmp.v6i3.2047.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Ruiz, M. J., E. Vañó, L. González, and J. M. Fernández. "Dose–area product values in frequently performed complex paediatric radiology examinations." British Journal of Radiology 69, no. 818 (February 1996): 160–64. http://dx.doi.org/10.1259/0007-1285-69-818-160.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Merkle, E., A. J. Aschoff, M. Muller, J. Merk, and H.-J. Brambs. "Computer assisted determination of the dose-area product in retrograde urethrography." British Journal of Radiology 69, no. 819 (March 1996): 262–65. http://dx.doi.org/10.1259/0007-1285-69-819-262.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Elbakri, I. A. "Estimation of dose-area product-to-effective dose conversion factors for neonatal radiography using PCXMC." Radiation Protection Dosimetry 158, no. 1 (July 28, 2013): 43–50. http://dx.doi.org/10.1093/rpd/nct192.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Smans, K., L. Struelens, M. T. Hoornaert, F. Bleeser, N. Buls, D. Berus, P. Clerinx, F. Malchair, F. Vanhavere, and H. Bosmans. "A study of the correlation between dose area product and effective dose in vascular radiology." Radiation Protection Dosimetry 130, no. 3 (February 29, 2008): 300–308. http://dx.doi.org/10.1093/rpd/ncn050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Hart, D., and B. F. Wall. "Estimation of effective dose from dose–area product measurements for barium meals and barium enemas." British Journal of Radiology 67, no. 797 (May 1994): 485–89. http://dx.doi.org/10.1259/0007-1285-67-797-485.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Nakano, Shinya, Hideo Nakagawa, Yuika Tsugami, Tomoko Fujita, Etsuko Nakamura та Noriko Kotoura. "A Study of Patientʼs Dose Control at Radiography by Using a Dose Area Product Meter". Japanese Journal of Radiological Technology 77, № 8 (2021): 805–10. http://dx.doi.org/10.6009/jjrt.2021_jsrt_77.8.805.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Dalah, Entesar Zawam. "Quantifying dose-creep for Skull and chest radiography using dose area product and entrance surface dose: Phantom study." Radiation Physics and Chemistry 167 (February 2020): 108231. http://dx.doi.org/10.1016/j.radphyschem.2019.03.035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Kawasaki, Toshio, Masami Sakakubo, Kanako Ito, and Ai Kitagawa. "ESTIMATION OF ORGAN DOSES AND EFFECTIVE DOSES BASED ON IN-PHANTOM DOSIMETRY FOR PAEDIATRIC DIAGNOSTIC CARDIAC CATHETERISATION." Radiation Protection Dosimetry 185, no. 2 (January 9, 2019): 215–21. http://dx.doi.org/10.1093/rpd/ncy298.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The present study evaluated the organ doses, effective doses and conversion factors from the dose–area product to effective dose in pediatric diagnostic cardiac catheterization performed by in-phantom dosimetry and Monte Carlo simulation. The organ and effective doses in 5-y-olds during diagnostic cardiac catheterizations were evaluated using radiophotoluminescence glass dosemeters implanted into a pediatric anthropomorphic phantom and PCXMC software. The mean effective dose was 3.8 mSv (range: 1.8–7.5 mSv). The conversion factors from the dose–area product to effective dose were 0.9 and 1.6 mSv (Gy cm2)−1 for posteroanterior and lateral fluoroscopy, respectively, and 0.9 and 1.5 mSv (Gy cm2)−1 for posteroanterior and lateral cineangiography, respectively. Effective doses evaluated using the pediatric dosimetry system agreed with those obtained using PCXMC software within 12%. The dose data and conversion factors evaluated may guide the estimation of exposure doses in children undergoing diagnostic cardiac catheterization.
50

Lukic, Snezana, Lukas Rasulic, Vojin Kovacevic, Filip Vitosevic, Andrija Savic, and Milan Mijailovic. "Radiation exposure during neurointerventional procedures in modern angiographic systems: A single center experience." Vojnosanitetski pregled 77, no. 9 (2020): 962–66. http://dx.doi.org/10.2298/vsp180112024l.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Background/Aim. Interventional neuroradiology procedures expose patients to ionizing radiation. The aim of this study was to assess doses received by patients during interventional neuroradiology procedures and to establish dose range with an estimate of risk from adverse consequences of irradiation. Methods. Our study describes series of patients submitted to diagnostic and/or therapeutic procedures at the Department of Interventional Neuroradiology, Clinical Center Kragujevac, Serbia, from December 1, 2014 to December 1, 2016. The following variables were considered for this study: kerma-area product, air kerma and fluoroscopy exposure time; peak skin dose and effective dose calculated from the kerma-area product. Results. Median kerma-area product was 87.802 Gy?cm2, 78.567 Gy?cm2, 117.626 Gy?cm2; effective dose was 12.731 mSv, 11.392 mSv, 17.056 mSv; peak skin dose was 0.456 Gy, 0.409 Gy, 0.612 Gy, and estimated brain dose was 254.62 mGy, 227.84 mGy, 341.12 mGy, for diagnostic, therapeutic and combined procedures, respectively. Conclusion. Interventional neuroradiology procedures show significant variability in radiation dose, due to patient constitution, radiologist expertise and equipment factors. Knowing the doses can have a great benefit for patients and medical and paramedical stff in terms of prevention of possible deterministic and stochastic effects of the radiation.

До бібліографії