Добірка наукової літератури з теми "Gastrointestinal system Motility"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Gastrointestinal system Motility".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

За допомогою хмари тегів ви можете побачити ще більше пов’язаних тем досліджень, а відповідні кнопки після кожного розділу сторінки дозволяють переглянути розширені списки книг, статей тощо на обрану тему.

Пов'язані теми наукових робіт:

Статті в журналах з теми "Gastrointestinal system Motility":

1
Wood, Jackie D. "Enteric Nervous System: Neuropathic Gastrointestinal Motility." Digestive Diseases and Sciences 61, no. 7 (May 2016): 1803–16. http://dx.doi.org/10.1007/s10620-016-4183-5.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
BURKS, THOMAS F. "Central Nervous System Regulation of Gastrointestinal Motility." Annals of the New York Academy of Sciences 597, 1 Neurobiology (July 1990): 36–42. http://dx.doi.org/10.1111/j.1749-6632.1990.tb16156.x.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Weisbrodt, Norman W. "Gastrointestinal motility." Gastroenterology 89, no. 6 (December 1985): 1445. http://dx.doi.org/10.1016/0016-5085(85)90680-8.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Bharucha, Adil E. "Gastrointestinal motility." Gastroenterology 120, no. 4 (March 2001): 1056. http://dx.doi.org/10.1016/s0016-5085(01)83920-2.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Oono, Tetsuro. "Gastrointestinal Motility." Kitakanto Medical Journal 63, no. 1 (2013): 93–94. http://dx.doi.org/10.2974/kmj.63.93.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Wang, Po-Min, Genia Dubrovsky, James C. Y. Dunn, Yi-Kai Lo, and Wentai Liu. "A Wireless Implantable System for Facilitating Gastrointestinal Motility." Micromachines 10, no. 8 (August 2019): 525. http://dx.doi.org/10.3390/mi10080525.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Gastrointestinal (GI) electrical stimulation has been shown in several studies to be a potential treatment option for GI motility disorders. Despite the promising preliminary research progress, however, its clinical applicability and usability are still unknown and limited due to the lack of a miniaturized versatile implantable stimulator supporting the investigation of effective stimulation patterns for facilitating GI dysmotility. In this paper, we present a wireless implantable GI modulation system to fill this technology gap. The system consists of a wireless extraluminal gastrointestinal modulation device (EGMD) performing GI electrical stimulation, and a rendezvous device (RD) and a custom-made graphical user interface (GUI) outside the body to wirelessly power and configure the EGMD to provide the desired stimuli for modulating GI smooth muscle activities. The system prototype was validated in bench-top and in vivo tests. The GI modulation system demonstrated its potential for facilitating intestinal transit in the preliminary in vivo chronic study using porcine models.
7
Smout, André J. P. M., and Marco W. Mundt. "Gastrointestinal motility testing." Best Practice & Research Clinical Gastroenterology 23, no. 3 (June 2009): 287–98. http://dx.doi.org/10.1016/j.bpg.2009.04.006.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Vantrappen, G., J. Janssens, G. Coremans, and R. Jian. "Gastrointestinal motility disorders." Digestive Diseases and Sciences 31, S9 (September 1986): 5–25. http://dx.doi.org/10.1007/bf01295987.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Haghiashtiani, Ghazaleh, and Michael C. McAlpine. "Sensing gastrointestinal motility." Nature Biomedical Engineering 1, no. 10 (October 2017): 775–76. http://dx.doi.org/10.1038/s41551-017-0146-1.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
&NA;. "Lower gastrointestinal motility." Nuclear Medicine Communications 15, no. 1 (January 1994): 1–3. http://dx.doi.org/10.1097/00006231-199401000-00001.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Gastrointestinal system Motility":

1
Spear, Estelle Trego. "Altered Gastrointestinal Motility in Multiple Sclerosis." Text, ScholarWorks @ UVM, 2001. https://scholarworks.uvm.edu/graddis/837.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system that causes motor, visual, and sensory symptoms. Patients also experience constipation, which is not yet understood, but could involve dysfunction of the enteric nervous system (ENS). Autoimmune targeting of the ENS occurs in other autoimmune diseases that exhibit gastrointestinal (GI) symptoms, and similar mechanisms could lead to GI dysfunction in MS. Here, we characterize GI dysmotility in the experimental autoimmune encephalomyelitis (EAE) model of MS and test whether autoantibodies targeting the ENS are present in the serum of MS patients. Male SJL or B6 mice were induced with EAE by immunization against PLP139-151, MOG35-55, or mouse spinal cord homogenate, and monitored daily for somatic motor symptoms. EAE mice developed GI symptoms consistent with those observed in MS. In vivo motility analysis demonstrated slower whole GI transit, and decreased colonic propulsive motility. EAE mice had faster rates of gastric emptying, with no changes in small intestinal motility. Consistent with these results, ex vivo evaluation of isolated colons demonstrated that EAE mice have slower colonic migrating myoelectric complexes and slow wave contractions. Immunohistochemistry of EAE colons exhibited a significant reduction in GFAP area of ENS ganglia, with no changes in HuD, S100, or neuron numbers. To test whether antibodies in MS bind to ENS structures, we collected serum samples from MS patients with constipation and without constipation, and healthy control patients without constipation. Immunoreactivity was tested using indirect immunofluorescence by applying serum samples to guinea pig ENS tissue. MS serum exhibited significantly higher immunoreactivity against guinea pig ENS than control patients, which was particularly evident in MS patients who did not experience constipation. There was no significant difference in immunoreactivity between MS patients with and without constipation. Targets of human MS and mouse EAE serum include enteric glia and neurons. Taken together, these data validate EAE as a model for constipation in MS, and support the concept that this symptom involves changes within the neuromuscular system of the colon. EAE mice develop symptoms consistent with constipation that affects functional ENS networks and may result in structural or phenotypic changes at the cellular level. Serum immunoreactivity suggests that autoantibodies could play a role in the development of constipation in MS by targeting the ENS itself.
2
Ullah, Sana. "Factors governing gastrointestinal motility." Electronic Thesis or Dissertation, University of Hull, 2012. http://hydra.hull.ac.uk/resources/hull:7166.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Introduction: The reasons for the rapid resolution of diabetes (DM) following bariatric surgery in a significant proportion of patients with morbid obesity remain unclear. This thesis investigates the putative role of changes in gastrointestinal (GI) motility and GI hormones as well as the possible significance of alterations in energy expenditure that occur as a consequence of weight loss. Methodology: My preliminary studies involved a systematic review of GI motility in obesity, and retrospective studies measuring GI motility with alternative methods including capsule endoscopy and hydrogen breath test. Subsequent to this I measured changes in GI motility in two very different patient cohorts; one following bariatric surgery for morbid obesity and the other a group of patients with proven gastroparesis treated with gastric neuromodulation (GNM). Parallel to the above I conducted studies of indirect calorimetry in these patients in an attempt to determine if changes in energy expenditure which occur as a consequence of weight loss were significant. Results: In our prospective study temporary GNM significantly improved gastric emptying and nutritional intake. There was conclusive evidence to causally relate alterations in GI motility and Glucagon like peptide -1 (GLP-1) with weight loss and resolution of DM following bariatric surgery. An interesting "spin off" result of my studies was validation of capsule endoscopy (CE) as a means of assessing GI motility. My results obtained from measure if indirect calorimetrty clearly show that standard equations tend to over estimate the energy requirements of this group. The implications of this are discussed. Conclusions: 1. Fast pouch emptying; an early and exaggerated GLP-1 response contributes in resolution of type 2 diabetes following RYGB. 2. GNM is an effective treatment for gastroparesis. 3. Capsule endoscopy may be used to assess GI motility. 4. Prediction equations over estimate energy requirements in morbidly obese patients.
3
Reid, Keith. "Gastrointestinal motility in vection induced nausea." Electronic Thesis or Dissertation, University of Sheffield, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299548.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Halim, Md Abdul. "Gut peptides in gastrointestinal motility and mucosal permeability." Doctoral thesis, comprehensive summary, Uppsala universitet, Gastroenterologi/hepatologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-294390.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Gut regulatory peptides, such as neuropeptides and incretins, play important roles in hunger, satiety and gastrointestinal motility, and possibly mucosal permeability. Many peptides secreted by myenteric nerves that regulate motor control are also produced in mucosal epithelial cells. Derangements in motility and mucosal permeability occur in many diseases. Current knowledge is fragmentary regarding gut peptide actions and mechanisms in motility and permeability. This thesis aimed to 1) develop probes and methods for gut permeability testing, 2) elucidate the role of neuropeptide S (NPS) in motility and permeability, 3) characterize nitrergic muscle relaxation and 4) characterize mechanisms of glucagon-like peptide 1 (GLP-1) and the drug ROSE-010 (GLP-1 analog) in motility inhibition. A rapid fluorescent permeability test was developed using riboflavin as a transcellular transport probe and the bisboronic acid 4,4'oBBV coupled to the fluorophore HPTS as a sensor for lactulose, a paracellular permeability probe. This yielded a lactulose:riboflavin ratio test. NPS induced muscle relaxation and increased permeability through NO-dependent mechanisms. Organ bath studies revealed that NPS induced NO-dependent muscle relaxation that was tetrodotoxin (TTX) sensitive. In addition to the epithelium, NPS and its receptor NPSR1 localized at myenteric nerves. Circulating NPS was too low to activate NPSR1, indicating NPS uses local autocrine/paracrine mechanisms. Nitrergic signaling inhibition by nitric oxide synthase inhibitor L-NMMA elicited premature duodenojejunal phase III contractions in migrating motility complex (MMC) in humans. L-NMMA shortened MMC cycle length, suppressed phase I and shifted motility towards phase II. Pre-treatment with atropine extended phase II, while ondansetron had no effect. Intestinal contractions were stimulated by L-NMMA, but not TTX. NOS immunoreactivity was detected in the myenteric plexus but not smooth muscle. Food-intake increased motility of human antrum, duodenum and jejunum. GLP-1 and ROSE-010 relaxed bethanechol-induced contractions in muscle strips. Relaxation was blocked by GLP-1 receptor antagonist exendin(9-39) amide, L-NMMA, adenylate cyclase inhibitor 2´5´-dideoxyadenosine or TTX. GLP-1R and GLP-2R were expressed in myenteric neurons, but not muscle. In conclusion, rapid chemistries for permeability were developed while physiological mechanisms of NPS, nitrergic and GLP-1 and ROSE-010 signaling were revealed. In the case of NPS, a tight synchrony between motility and permeability was found.
5
Zhao, Ling. "Increased bile acid-metabolizing bacteria contributes to enhanced gastrointestinal motility in irritable bowel syndrome." Text, HKBU Institutional Repository, 2008. https://repository.hkbu.edu.hk/etd_oa/561.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Irritable bowel syndrome (IBS), majorly characterized by irregular bowel movements and abdominal pain, is one of the most prevalent functional gastrointestinal disorders (FGIDs) in the world. Disturbance of gut microbiota, closely linking with gut dysfunction, has been regarded as one of important pathogenetic factors for IBS. However, gut microbiota-driven mechanism underlying IBS remains unclear, which leads to inefficient and non-specific effects of current microbiota-oriented therapy. In this thesis, function-based microbiota investigation with combination of metagenomic and metabolomic analyses was separately performed in IBS cohort and model to precisely link pathogenic species with disordered GI motor function. A series of microbiota manipulation studies in rodents were conducted to explore bacteria-driven molecular mechanism. Firstly, a pilot study with 'omics' analyses revealed fecal microbial structure significantly varied in IBS patients with disorder GI motility relative to healthy controls (HC). Such changed IBS enterotype was functionally characterized by disturbed metabolism of bile acids (BAs) that are previously proved to regulate GI motor function. It indicates microbiota-driven GI dysmotility relevant to disturbance of BA metabolism in IBS. Secondly, a systematic review with meta-analysis was performed to comprehensively understand existing findings related to BA metabolism and its linkage with IBS. Results showed that abnormal BA excretion, previously reported in at least one IBS subtype, is associated with dysregulation of BA synthesis, marked with abnormalities of circulating indices 7α-hydroxy-4-cholesten-3-one (C4) and fibroblast growth factor 19 (FGF19). However, what's the role of gut microbiota in abnormal BA excretion is undetermined. Thirdly, to explore possible role of gut microbiota in abnormal BA excretion in IBS, BA metabolites and BA-related microbiome were simultaneously analyzed in stools of recruited subjects. Results found that total BA and microbiota-derived BAs were remarkably elevated in a quarter of IBS-D patients (BA+IBS-D) who exhibited more frequent defecation, higher level of serum C4 but lower level of serum FGF19 than those with normal BA excretion (BA-IBS-D). In line with metabolic results, abundances of BA-metabolizing bacteria, particularly Clostridium scindens (C. scindens) simultaneously expressed hdhA and bais that are responsible for BA 7α oxidation and dehydroxylation, were highly enriched in fecal metagenomes of such particular IBS-D population. These findings suggest the increased BA-metabolizing microbiome is associated with the dysregulated host BA synthesis in the subgroup of BA+IBS-D patients. Fourthly, by analyzing metabolites and bacteria related to BA metabolism, a neonatal maternal separation (NMS)-induced IBS-D rat model characterized by accelerated GI motility and excessive BA excretion were found to largely mimic gut microbial BA metabolism in BA+IBS-D patients. Specifically, intraluminal total and secondary BAs were significantly elevated in the large intestinal lumens (cecum, proximal colon and feces) of NMS rats, together with increased abundances of hdhA- and bais-expressing Clostridium species, including C. scindens. Moreover, quantitative polymerase chain reaction (PCR) analysis showed upregulated mRNA expression of cholesterol 7 α-hydroxylase (CYP7A1) whereas downregulated mRNA expression of small heterodimer partner (SHP) in the liver of NMS rats, indicating enhanced hepatic BA synthetic level. These observations based on such IBS-D model suggest the association of excessive BA-metabolizing microbiome and increased hepatic BA synthesis. Fifthly, to further clarify whether excessive BA-metabolizing bacteria contribute to enhanced hepatic BA synthesis and to explore the underlying molecular mechanism, we performed bacterial intervention in pseudo germ-free (GF) or/and specific pathogen free (SPF) mice by transplantation of human fecal microbiota and the signal strain C. scindens. Compared with GF mouse recipients of HC and BA-IBS-D fecal microbiota, BA+IBS-D fecal microbial recipients displayed shorter GI transit and increased subsistence of C. scindens in the cecal contents. In line with higher level of serum C4, taurine-conjugated BA contents and mRNA expressions of BA synthetase CYP7A1 and sterol 12α-hydroxylase (CYP8B1) were significantly elevated in the liver of BA+IBS-D recipients. These findings showed bioactive effects of BA+IBS-D fecal microbiota with enrichment of C. scindens on hepatic BA synthesis. Next, to further confirm the effects of the species C. scindens on host BA synthesis, we individually colonized C. scindens strains (ATCC 37504) to pseudo GF and SPF mice. Results showed both mice models with single strain colonization exhibited accelerated GI transit and higher contents of hepatic total and taurine-conjugated BAs compared with individual vehicles treated with PBS. Combining metabolic changes, the upregulated expressions of hepatic CYP7A1 mRNA in colonized mice indicate that C. scindens substantially promote hepatic BA synthesis in colonized mice. Furthermore, contents of taurine-conjugated BAs, served as natural antagonists of farnesoid X receptor (FXR) that negatively control of new BA synthesis, were elevated in ileal lumens of colonized mice. Expressions of FXR-targeted genes SHP and fibroblast growth factor 15 (FGF15) were consistently reduced in the liver and ileum tissues of colonized mice, respectively. Results suggest that suppression of FXR-mediated feedback signaling is involved in Clostridium-driven hepatic BA oversynthesis, which deserve the further investigation. Collectively, the works of this thesis integrating clinical and animal studies indicate that BA-metabolizing bacteria, particularly C. scindens, enhance hepatic BA synthesis and consequently leads to BA overexcretion. It provides novel bacteria-driven mechanism for enhanced GI motility, and supply a direction in precise microbiota-related pathogenesis and medication for IBS-D population in future.
6
羅穎祖 and Wing-joe Lo. "Effects of neurotransmitters and peptides on gastrointestinal motilityin the shark, hemiscyllium plagiosum (Bennett)." PG_Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B3123382X.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Mitchell, Catherine Lindsay. "The relationship between motility and gastrointestinal transit of tablets." Electronic Thesis or Dissertation, University College London (University of London), 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244751.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Kelly, John. "Pharmacological characterisation of alpha-adrenoceptors in the gastrointestinal tract." Electronic Thesis or Dissertation, Glasgow Caledonian University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377912.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Branstutter, Joseph W. "The role of nitric oxide in altering intestinal motility in lipopolysaccharide-injected rats : a morphological and functional assessment." Virtual Press, 1999. http://liblink.bsu.edu/uhtbin/catkey/1136700.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nitric oxide, a short-lived free radical and neurotransmitter, is responsible for decreased smooth muscle contractility in vitro. When in excess, NO can cause hypotension and is believed to mediate altered intestinal motility. Not enough evidence is available for morphological changes in gastrointestinal smooth muscle and its correlation with motility disorders caused by Escherichia coli-induced NO production. Male Lewis rats were treated with injections of 10 mg/kg LPS from E. coli with or without 12.5 mg/kg of NOS inhibitor, LNMMA. Eighteen to 24 hours following injection, duodenum, ileum, colon, liver, and spleen were harvested for histological analysis. Urine and fecal analysis assessed functional aspects in control and treatment groups. Muscularis externa measurements revealed significant increase in muscle thickness of LPS + LNMMA injected group compared to control and LPS group. However, the average values in control and LPS group were not significantly different. Fecal consistency was significant in all 3 groups. Mean urinary nitrite in the LPS group was 44 times higher than control and 52 times higher than the inhibitor-treated group.
Department of Physiology and Health Science
10
HIRNING, LANE DURAND. "MULTIPLE PEPTIDE RECEPTORS AND SITES OF ACTION IN THE CANINE SMALL INTESTINE (OPIOIDS, MOTILIN, TACHYKININS, INTESTINAL MOTILITY, SUBSTANCE P)." Dissertation-Reproduction (electronic), The University of Arizona, 1986. http://hdl.handle.net/10150/188150.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Motility of the small intestine is a result of complex neurochemical and hormonal interactions within the intestine. The net motility (contraction) of the intestine is a balance of the influences from the central nervous system, enteric nervous system and hormonal changes in the body. Recently, the discovery of several peptide neurotransmitters common to the brain and the intestine has stimulated new research into the influence of these novel neurotransmitter candidates on intestinal motility at the level of the enteric (intestinal) nervous system. The present studies examined the contractile actions of three families of peptides, the opioids, tachykinins and motilin. Each of these peptide groups has been localized in the intestine, and suggested to function in the control of intestinal motility. The peptides were administered by intraarterial injection to isolated segments of canine small intestine and the resulting contractile activity measured. The results of these experiments demonstrate that all of these peptides may elicit contractile activity of the intestine in very low doses. These actions were further examined, using pharmacological antagonists, to determine the mechanism of action and the receptor types involved in the contractile actions. The opioid peptide induced responses were found to be mediated by two receptor types, mu and delta, located on the enteric nerve and smooth muscle, respectively. Similarly, the tachykinin induced contractions were also found to be due to actions on two receptor types, SP-P and SP-K, located on the nerve and muscle layers, respectively. These data suggest that the opioids and tachykinins may have multiple functions in the intestine dependent on the site of action and the receptor type involved in the response. Administration of motilin induced long-lasting contractile patterns in the intestine. The results also suggest that the actions of motilin are mediated by intermediate neurons of the enteric plexes which synapse on terminal cholinergic motor neurons.

Книги з теми "Gastrointestinal system Motility":

1
Grundy, David. Gastrointestinal Motility. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-010-9355-2.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Rao, Satish S. C., Jeffrey L. Conklin, Frederick C. Johlin, Joseph A. Murray, Konrad S. Schulze-Delrieu, and Robert W. Summers, eds. Gastrointestinal Motility. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4803-4.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Bardan, Eytan, and Reza Shaker, eds. Gastrointestinal Motility Disorders. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-59352-4.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Malagelada, J. R. Manometric diagnosis of gastrointestinal motility disorders. New York: Thieme, 1986.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Grundy, David. Gastrointestinal motility: The integration of physiological mechanisms. Lancaster: MTP Press, 1985.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Zenilman, Michael E. Abnormalities of intestinal motility. Austin: R.G. Landes, 1992.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Smout, A. J. P. M. Normal and disturbed motility of the gastrointestinal tract. Petersfield: Wrightson Biomedical Pub., 1992.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Quigley, Eamonn M. M., and Shin Fukudo. Functional and GI motility disorders. Basel: Karger, 2014.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Soffer, Edy. Color Atlas of High Resolution Manometry. Boston, MA: Springer-Verlag US, 2009.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
McCallum, Richard W., Henry P. Parkman, and Satish S. C. Rao. GI motility testing: A laboratory and office handbook. Thorofare, NJ: SLACK, 2011.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Gastrointestinal system Motility":

1
Chang, Eugene B., and Po Sing Leung. "Gastrointestinal Motility." In The Gastrointestinal System, 35–62. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8771-0_2.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Hirano, Ikuo, and Darren Brenner. "Gastrointestinal motility." In Gastrointestinal Anatomy and Physiology, 33–45. Oxford: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118833001.ch3.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Klaus, Jennifer. "Gastrointestinal system motility and integrity." In Monitoring and Intervention for the Critically Ill Small Animal, 267–83. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781118923870.ch15.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Grundy, David. "Gastrointestinal smooth muscle." In Gastrointestinal Motility, 1–16. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-010-9355-2_1.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Grundy, David. "The coordination of gastrointestinal motility: the fed state." In Gastrointestinal Motility, 161–68. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-010-9355-2_10.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Grundy, David. "Intramural ganglia and mechanism of peristalsis." In Gastrointestinal Motility, 17–34. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-010-9355-2_2.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Grundy, David. "Extrinsic innervation." In Gastrointestinal Motility, 35–56. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-010-9355-2_3.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Grundy, David. "Neurocrines, endocrines and paracrines." In Gastrointestinal Motility, 57–74. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-010-9355-2_4.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Grundy, David. "The oesophagus." In Gastrointestinal Motility, 75–91. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-010-9355-2_5.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Grundy, David. "The stomach." In Gastrointestinal Motility, 93–110. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-010-9355-2_6.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Gastrointestinal system Motility":

1
DOMÍNGUEZ-MUÑOZ, J. ENRIQUE. "GASTROINTESTINAL MOTILITY DISORDERS IN CHRONIC PANCREATITIS." In Proceedings of the 92nd Course of the International School of Medical Sciences. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814447249_0011.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Kirilina, Svetlana I., Rinat K. Kusainov, Vladimir K. Makukha, Renat A. Mubarakshin, Elena S. Poltaratskaya, and Galina G. Sirota. "The time-response characteristics of gastrointestinal motility." In 2016 13th International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). IEEE, 2016. http://dx.doi.org/10.1109/apeie.2016.7802195.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
JinG, Hui-feng. "Cause Gastrointestinal Motility Dysfunction and Its Mechanism." In 2015 4th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icmmcce-15.2015.484.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Yoshimoto, Kayo, Kenji Yamada, Kenji Watabe, Maki Takeda, Takahiro Nishimura, Michiko Kido, Toshiaki Nagakura, et al. "Evaluation of the three-dimensional endoscope system for assessing the gastrointestinal motility." In SPIE BiOS, edited by Tuan Vo-Dinh, Anita Mahadevan-Jansen, and Warren S. Grundfest. SPIE, 2014. http://dx.doi.org/10.1117/12.2041652.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Poh, Yong Cheng, and Martin Lindsay Buist. "A computational approach to understanding gastrointestinal motility in health and disease." In 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011. http://dx.doi.org/10.1109/iembs.2011.6090057.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Nobe, Kazuki, Kayo Yoshimoto, Kenji Yamada, and Hideya Takahashi. "3D registration method for assessing the gastrointestinal motility using spectral reflectance estimation." In Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XVI, edited by Tuan Vo-Dinh, Anita Mahadevan-Jansen, and Warren S. Grundfest. SPIE, 2018. http://dx.doi.org/10.1117/12.2288383.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Deniz Ulusar, Umit, Murat Canpolat, Muhittin Yaprak, Seyfettin Kazanir, and Guner Ogunc. "Real-time monitoring for recovery of gastrointestinal tract motility detection after abdominal surgery." In 2013 7th International Conference on Application of Information and Communication Technologies (AICT). IEEE, 2013. http://dx.doi.org/10.1109/icaict.2013.6722654.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Yoshimoto, Kayo, Kenji Yamada, Kenji Watabe, Tetsuji Fujinaga, Michiko Kido, Toshiaki Nagakura, Hideya Takahashi, et al. "Evaluation of motion compensation method for assessing the gastrointestinal motility using three dimensional endoscope." In SPIE BiOS, edited by Tuan Vo-Dinh, Anita Mahadevan-Jansen, and Warren S. Grundfest. SPIE, 2016. http://dx.doi.org/10.1117/12.2214423.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Wölfelschneider, H., R. Kist, J. Schneider, and H. Modler. "A Fiber - Fabry - Perot Motility Sensor for the Measurement of Peristaltic Motions in the Upper Gastrointestinal Tract." In Optical Fiber Sensors. Washington, D.C.: OSA, 1988. http://dx.doi.org/10.1364/ofs.1988.faa4.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Mabotuwana, T. D. S., L. K. Cheng, N. P. Smith, and A. J. Pullan. "Modeling Blood Flow in the Gastrointestinal System." In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.4397777.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Gastrointestinal system Motility":

1
Touch Surgery. Upper Gastrointestinal Anatomy. Touch Surgery Publications, December 2018. http://dx.doi.org/10.18556/touchsurgery/2016.s0155.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Stern, Robert M. Motion Adaptation Syndrome: Gastrointestinal Aspects. Fort Belvoir, VA: Defense Technical Information Center, November 2001. http://dx.doi.org/10.21236/ada390627.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Wells, Alan, Douglas A. Lauffenburger, and Timothy Turner. Cell Motility in Tumor Invasion. Fort Belvoir, VA: Defense Technical Information Center, July 2004. http://dx.doi.org/10.21236/ada428576.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Wells, Alan, Douglas A. Lauffenburger, and Timothy Turner. Cell Motility in Tumor Invasion. Fort Belvoir, VA: Defense Technical Information Center, July 2003. http://dx.doi.org/10.21236/ada417877.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Wells, Alan, Douglas A. Lauffenburger, and Timothy Turner. Cell Motility in Tumor Invasion. Fort Belvoir, VA: Defense Technical Information Center, July 2002. http://dx.doi.org/10.21236/ada410314.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Gill, Steven R. Genomics of the Human Gastrointestinal Microbiome. Fort Belvoir, VA: Defense Technical Information Center, December 2004. http://dx.doi.org/10.21236/ada432197.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Bodt, B. A., and R. J. Young. Hyperactivated Rabbit Sperm Cell Motility Parameters. Fort Belvoir, VA: Defense Technical Information Center, March 1995. http://dx.doi.org/10.21236/ada294502.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
DeSesso, John M., and Richard D. Mavis. Identification of Critical Biological Parameters Affecting Gastrointestinal Absorption. Fort Belvoir, VA: Defense Technical Information Center, January 1990. http://dx.doi.org/10.21236/ada236507.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Chirgwin, John. Role of Autocrine Motility in Osteolytic Metastasis. Fort Belvoir, VA: Defense Technical Information Center, April 2000. http://dx.doi.org/10.21236/ada391901.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Brackanbury, Robert W. Control of Carcinoma Cell Motility by E-Cadherin. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada403381.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії

Будь ласка, вимкніть ваш блокувальник реклами

Adblock logo Adblock logo Adblock logo

"Grafiati" – це незалежний сервіс, що забезпечує унікальну якість оформлення бібліографічних посилань. Ви можете користуватися нашим сайтом безоплатно, дозволивши показ реклами, або оформити передплату.

Передплатити