Добірка наукової літератури з теми "Geology, Stratigraphic Proterozoic"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Geology, Stratigraphic Proterozoic".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

За допомогою хмари тегів ви можете побачити ще більше пов’язаних тем досліджень, а відповідні кнопки після кожного розділу сторінки дозволяють переглянути розширені списки книг, статей тощо на обрану тему.

Пов'язані теми наукових робіт:

Статті в журналах з теми "Geology, Stratigraphic Proterozoic":

1
Martins-Neto, Marcelo A. "Sequence stratigraphic framework of Proterozoic successions in eastern Brazil." Marine and Petroleum Geology 26, no. 2 (February 2009): 163–76. http://dx.doi.org/10.1016/j.marpetgeo.2007.10.001.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Halverson, Galen P., Susannah M. Porter, and Timothy M. Gibson. "Dating the late Proterozoic stratigraphic record." Emerging Topics in Life Sciences 2, no. 2 (July 2018): 137–47. http://dx.doi.org/10.1042/etls20170167.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Tonian and Cryogenian periods (ca. 1000–635.5 Ma) witnessed important biological and climatic events, including diversification of eukaryotes, the rise of algae as primary producers, the origin of Metazoa, and a pair of Snowball Earth glaciations. The Tonian and Cryogenian will also be the next periods in the geological time scale to be formally defined. Time-calibrating this interval is essential for properly ordering and interpreting these events and establishing and testing hypotheses for paleoenvironmental change. Here, we briefly review the methods by which the Proterozoic time scale is dated and provide an up-to-date compilation of age constraints on key fossil first and last appearances, geological events, and horizons during the Tonian and Cryogenian periods. We also develop a new age model for a ca. 819–740 Ma composite section in Svalbard, which is unusually complete and contains a rich Tonian fossil archive. This model provides useful preliminary age estimates for the Tonian succession in Svalbard and distinct carbon isotope anomalies that can be globally correlated and used as an indirect dating tool.
3
GEHLING, JAMES G., SÖREN JENSEN, MARY L. DROSER, PAUL M. MYROW, and GUY M. NARBONNE. "Burrowing below the basal Cambrian GSSP, Fortune Head, Newfoundland." Geological Magazine 138, no. 2 (March 2001): 213–18. http://dx.doi.org/10.1017/s001675680100509x.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The range of Treptichnus pedum, the index trace fossil for the Treptichnus pedum Zone, extends some 4 m below the Global Standard Stratotype-section and Point for the base of the Cambrian Period at Fortune Head on the Burin Peninsula in southeastern Newfoundland. The identification of zigzag traces of Treptichnus isp., even further below the GSSP than T. pedum in the Fortune Head section, and in other terminal Proterozoic successions around the globe, supports the concept of a gradational onset of three-dimensional burrowing across the Proterozoic–Cambrian boundary. Although T. pedum remains a reasonable indicator for the base of the Cambrian Period, greater precision in the stratotype section can be achieved by a detailed re-evaluation of the stratigraphic ranges and the morphological variation of ichnotaxa included in the T. pedum Zone.
4
Nagovitsin, K. E., A. M. Stanevich, and T. A. Kornilova. "Stratigraphic setting and age of the complex Tappania-bearing Proterozoic fossil biota of Siberia." Russian Geology and Geophysics 51, no. 11 (November 2010): 1192–98. http://dx.doi.org/10.1016/j.rgg.2010.10.004.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
SAYLOR, BEVERLY Z., JANICE M. POLING, and WARREN D. HUFF. "Stratigraphic and chemical correlation of volcanic ash beds in the terminal Proterozoic Nama Group, Namibia." Geological Magazine 142, no. 5 (September 2005): 519–38. http://dx.doi.org/10.1017/s0016756805000932.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
At least twenty silicified volcanic ash beds have been identified in the Kuibis and Schwarzrand subgroups of the terminal Proterozoic Nama Group of Namibia. Nineteen of the Nama ash beds are in the Schwarzrand Subgroup in the Witputs subbasin. Two of these are in the siliciclastic-dominated lower part of the subgroup, which consists of the Nudaus Formation and Nasep Member of the Urusis Formation and comprises two depositional sequences. Identification and correlation of these ash beds are very well known based on stratigraphic position. Sixteen ash beds are contained within the carbonate-dominated strata of the Huns, Feldschuhhorn and Spitskop members of the Urusis Formation. These strata comprise four large-scale sequences and eighteen medium-scale sequences. Ash beds have been found in three of the large-scale sequences and seven of the medium-scale sequences. Correlations are proposed for these ash beds that extend over large changes in facies and stratal thickness and across transitions between the seaward margin, depocentre and landward margin of the Huns-Spitskop carbonate shelf. A study of whole rock and in situ phenocryst compositions was conducted to evaluate the feasibility of independently testing sequence stratigraphic correlations by geochemically identifying individual ash beds. Whole rock abundances of Al, Fe, Mg, K and Ti vary inversely with Si, reflecting variations in phenocryst concentration due to air fall and hydrodynamic sorting. These sorting processes did not substantially fractionate whole rock rare earth element abundances (REE), which vary more widely with Si. REE abundances are higher in samples of the Nudaus ash bed than in samples of the Nasep ash bed, independent of position in bed, phenocryst abundance, or grainsize, providing a geochemical means for discriminating between the two beds. Variations in the position of chondrite-normalized whole rock REE plots similarly support suspected correlations of ash beds between widely separated sections of the Spitskop Member. Abundances of Fe, Mg and Mn in apatite plot in distinct clusters for Spitskop ash beds that are known to be different and in clusters that overlap for ash beds suspected of correlating between sections. Abundances of REE in monazites differ for the Nudaus, Nasep and Spitskop ash beds in which these phenocrysts were identified. Multivariate statistical analysis provided a quantitative analysis of the discriminating power of different elements and found that whole rock abundances of Ge, Nb, Cs, Ba and La discriminate among the whole rock compositions of the Nudaus and Nasep ash beds and the Spitskop ash beds that are thought to correlate between sections. Each of the above geochemical signatures, by itself, is not definitive because the differences between beds are comparable to the variability within beds and because some signatures are shared by beds known to be different. Taken together, however, weight-of-evidence arguments based on multiple components and phases can successfully discriminate among Nama ash beds. Results from this study support sequence stratigraphic correlations of Spitskop ash beds that document stratal truncations and gaps in the record related to onlap and erosion.
6
Wu, He Yuan, and Bin Hao. "Third-Order Sequence Division of Yunmengshan and Baicaoping Formation of Proterozoic in Yuxi District of China: an Example from Xiatang Profile in Lushan." Advanced Materials Research 998-999 (July 2014): 1492–97. http://dx.doi.org/10.4028/www.scientific.net/amr.998-999.1492.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
There are controversies on the Proterozoic stratigraphic genesis, division, correlation and palaeogeographical evolution of western Henan in China. Based on the basic description of sedimentary facies, Yunmengshan and Baicaoping formation of Proterozoic typical section in western Henan is divided into 4 third-order sequences. Sequence stratigraphy framework which reflects sedimentary and overlap is established with basis of two kinds of facies-change surface and two kinds of diachrononism in stratigraphical records. Although chronostratigraphic belonging of Precambrian strata is controversial and Precambrian sequential stratigraphic study is tremendously challenging, the establishment of sequence stratigraphy framework of proterozoic Yunmengshan and Baicaoping formation in western Henan provides actual data to reshape palaeogeographic pattern of Palaeoproterozoic North China craton. What is more, it becomes a typical example of characteristics and exploration of stratigraphic accumulation under the background of tidal action.
7
Jinbiao, Chen. "An explanatory note on proterozoic stratigraphic nomenclature used in the People's Republic of China." Precambrian Research 29, no. 1-3 (June 1985): 3–4. http://dx.doi.org/10.1016/0301-9268(85)90054-3.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Green, J. W., A. H. Knoll, and K. Swett. "Microfossils from silicified stromatolitic carbonates of the Upper Proterozoic Limestone-Dolomite 'Series', central East Greenland." Geological Magazine 126, no. 5 (September 1989): 567–85. http://dx.doi.org/10.1017/s0016756800022858.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractSilicified flake conglomerates andin situstratiform stromatolites of the Upper Proterozoic (c.700–800 Ma) Limestone-Dolomite ‘Series’, central East Greenland, contain well preserved microfossils. Five stratigraphic horizons within the 1200 m succession contain microbial mat assemblages, providing a broad palaeontological representation of late Proterozoic peritidal mat communities. Comparison of assemblages demonstrates that the taxonomy and diversity of mat builder, dweller, and allochthonous populations all vary considerably within and among horizons. The primary mat builder in most assemblages isSiphonophycus inornatum, a sheath-forming prokaryote of probable but not unequivocally established cyanobacterial affinities. An unusual low diversity unit in Bed 17 is dominated by a different builder,Tenuofilum septatum, while a thin cryptalgal horizon in Bed 18 is built almost exclusively bySiphonophycus kestron.Although variable taphonomic histories contribute to observed assemblage variation, most differences within and among horizons appear to reflect the differential success or failure of individual microbial populations in colonizing different tidal flat microenvironments. Twenty-two taxa are recognized, of which two are described as new:Myxococcoides stragulescensn.sp. andScissilisphaera gradatan. sp.
9
Jackson, J., I. P. Sweet, and T. G. Powell. "STUDIES ON PETROLEUM GEOLOGY AND GEOCHEMISTRY, MIDDLE PROTEROZOIC, McARTHUR BASIN NORTHERN AUSTRALIA I: PETROLEUM POTENTIAL." APPEA Journal 28, no. 1 (1988): 283. http://dx.doi.org/10.1071/aj87022.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Mature, rich, potential source beds and adjacent potential reservoir beds exist in the Middle Proterozoic sequence (1400-1800 Ma) of the McArthur Basin. The McArthur and Nathan Groups consist mainly of evaporitic and stromatolitic cherty dolostones interbedded with dolomitic siltstone and shale. They were deposited in interfingering marginal marine, lacustrine and fluvial environments. Lacustrine dolomitic siltstones form potential source beds, while potential reservoirs include vuggy brecciated carbonates associated with penecontemporaneous faulting and rare coarse-grained clastics. In contrast, the younger Roper Group consists of quartz arenite, siltstone and shale that occur in more uniform facies deposited in a stable marine setting. Both source and reservoir units are laterally extensive (over 200 km).Five potential source rocks at various stages of maturity have been discovered. Two of these source rocks, the lacustrine Barney Creek Formation in the McArthur Group and the marine Velkerri Formation in the Roper Group, compare favourably in thickness and potential with rich demonstrated source rocks in major oil-producing provinces. There is abundant evidence of migration of hydrocarbons at many stratigraphic levels. The geology and reservoir characteristics of the sediments in combination with the distribution of potential source beds, timing of hydrocarbon generation, evidence for migration and chances of preservation have been used to rank the prospectivity of the various stratigraphic units in different parts of the basin.
10
Phillips, Bruce J., Alan W. James, and Graeme M. Philip. "THE GEOLOGY AND HYDROCARBON POTENTIAL OF THE NORTH-WESTERN OFFICER BASIN." APPEA Journal 25, no. 1 (1985): 52. http://dx.doi.org/10.1071/aj84004.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Recent petroleum exploration in EP 186 and EP 187 in the north-western Officer Basin has greatly increased knowledge of the regional stratigraphy, structure and petroleum prospectivity of the region. This exploration programme has involved the drilling of two deep stratigraphic wells (Dragoon 1 and Hussar 1) and the acquisition of 1438 km of seismic data. Integration of regional gravity and aeromagnetic data with regional seismic and well data reveals that the Gibson Sub-basin primarily contains a Proterozoic evaporitic sequence. In contrast, the Herbert Sub-basin contains a Late Proterozoic to Cambrian clastic and carbonate sequence above the evaporites. This sequence, which was intersected in Hussar 1, is identified as the primary exploration target in the Western Officer Basin. The sequence contains excellent reservoir and seal rocks in association with mature source rocks. Major structuring of the basin has also been caused by compressive movements associated with the Alice Springs Orogeny. The northwestern Officer Basin thus has all of the ingredients for the discovery of commercial hydrocarbons.

Дисертації з теми "Geology, Stratigraphic Proterozoic":

1
Strauss, Toby Anthony Lavery. "The geology of the Proterozoic Haveri Au-Cu deposit, Southern Finland." Thesis, Rhodes University, 2004. http://hdl.handle.net/10962/d1015978.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Haveri Au-Cu deposit is located in southern Finland about 175 km north of Helsinki. It occurs on the northern edge of the continental island arc-type, volcano-sedimentary Tampere Schist Belt (TSB) within the Palaeoproterozoic Svecofennian Domain (2.0 – 1.75 Ga) of the Fennoscandian Shield. The 1.99 Ga Haveri Formation forms the base of the supracrustal stratigraphy consisting of metavolcanic pillow lavas and breccias passing upwards into intercalated metatuffs and metatuffites. There is a continuous gradation upwards from the predominantly volcaniclastic Haveri Formation into the overlying epiclastic meta-greywackes of the Osara Formation. The Haveri deposit is hosted in this contact zone. This supracrustal sequence has been intruded concordantly by quartz-feldspar porphyries. Approximately 1.89 Ga ago, high crustal heat flow led to the generation and emplacement of voluminous synkinematic, I-type, magnetite-series granitoids of the Central Finland Granitoid Complex (CFGC), resulting in coeval high-T/low-P metamorphism (hornfelsic textures), and D₁ deformation. During the crystallisation and cooling of the granitoids, a magmatic-dominated hydrothermal system caused extensive hydrothermal alteration and Cu-Au mineralisation through the late-D₁ to early-D₂ deformation. Initially, a pre-ore Na-Ca alteration phase caused albitisation of the host rock. This was closely followed by strong Ca-Fe alteration, responsible for widespread amphibolitisation and quartz veining and associated with abundant pyrrhotite, magnetite, chalcopyrite and gold mineralisation. More localised calcic-skarn alteration is also present as zoned garnetpyroxene- epidote skarn assemblages with associated pyrrhotite and minor sphalerite, centred on quartzcalcite± scapolite veinlets. Post-ore alteration includes an evolution to more K-rich alteration (biotitisation). Late D₂-retrograde chlorite began to replace the earlier high-T assemblage. Late emanations (post-D₂ and pre-D₃) from the cooling granitoids, under lower temperatures and oxidising conditions, are represented by carbonate-barite veins and epidote veinlets. Later, narrow dolerite dykes were emplaced followed by a weak D₃ deformation, resulting in shearing and structural reactivation along the carbonate-barite bands. This phase was accompanied by pyrite deposition. Both sulphides and oxides are common at Haveri, with ore types varying from massive sulphide and/or magnetite, to networks of veinlets and disseminations of oxides and/or sulphides. Cataclastites, consisting of deformed, brecciated bands of sulphide, with rounded and angular clasts of quartz vein material and altered host-rock are an economically important ore type. Ore minerals are principally pyrrhotite, magnetite and chalcopyrite with lesser amounts of pyrite, molybdenite and sphalerite. There is a general progression from early magnetite, through pyrrhotite to pyrite indicating increasing sulphidation with time. Gold is typically found as free gold within quartz veins and within intense zones of amphibolitisation. Considerable gold is also found in the cataclastite ore type either as invisible gold within the sulphides and/or as free gold within the breccia fragments. The unaltered amphibolites of the Haveri Formation can be classified as medium-K basalts of the tholeiitic trend. Trace and REE support an interpretation of formation in a back-arc basin setting. The unaltered porphyritic rocks are calc-alkaline dacites, and are interpreted, along with the granitoids as having an arc-type origin. This is consistent with the evolution from an initial back-arc basin, through a period of passive margin and/or fore-arc deposition represented by the Osara Formation greywackes and the basal stratigraphy of the TSB, prior to the onset of arc-related volcanic activity characteristic of the TSB and the Svecofennian proper. Using a combination of petrogenetic grids, mineral compositions (garnet-biotite and hornblendeplagioclase thermometers) and oxygen isotope thermometry, peak metamorphism can be constrained to a maximum of approximately 600 °C and 1.5 kbars pressure. Furthermore, the petrogenetic grids indicate that the REDOX conditions can be constrained at 600°C to log f(O₂) values of approximately - 21.0 to -26.0 and -14.5 to -17.5 for the metasedimentary rocks and mafic metavolcanic rocks respectively, thus indicating the presence of a significant REDOX boundary. Amphibole compositions from the Ca-Fe alteration phase (amphibolitisation) indicate iron enrichment with increasing alteration corresponding to higher temperatures of formation. Oxygen isotope studies combined with limited fluid inclusion studies indicate that the Ca-Fe alteration and associated quartz veins formed at high temperatures (530 – 610°C) from low CO₂, low- to moderately saline (<10 eq. wt% NaCl), magmatic-dominated fluids. Fluid inclusion decrepitation textures in the quartz veins suggest isobaric decompression. This is compatible with formation in high-T/low-P environments such as contact aureoles and island arcs. The calcic-skarn assemblage, combined with phase equilibria and sphalerite geothermometry, are indicative of formation at high temperatures (500 – 600 °C) from fluids with higher CO₂ contents and more saline compositions than those responsible for the Fe-Ca alteration. Limited fluid inclusion studies have identified hypersaline inclusions in secondary inclusion trails within quartz. The presence of calcite and scapolite also support formation from CO₂-rich saline fluids. It is suggested that the calcic-skarn alteration and the amphibolitisation evolved from the same fluids, and that P-T changes led to fluid unmixing resulting in two fluid types responsible for the observed alteration variations. Chlorite geothermometry on retrograde chlorite indicates temperatures of 309 – 368 °C. As chlorite represents the latest hydrothermal event, this can be taken as a lower temperature limit for hydrothermal alteration and mineralisation at Haveri.The gold mineralisation at Haveri is related primarily to the Ca-Fe alteration. Under such P-T-X conditions gold was transported as chloride complexes. Ore was localised by a combination of structural controls (shears and folds) and REDOX reactions along the boundary between the oxidised metavolcanics and the reduced metasediments. In addition, fluid unmixing caused an increase in pH, and thus further augmented the precipitation of Cu and Au. During the late D₂-event, temperatures fell below 400 °C, and fluids may have remobilised Au and Cu as bisulphide complexes into the shearcontrolled cataclastites and massive sulphides. The Haveri deposit has many similarities with ore deposit models that include orogenic lode-gold deposits, certain Au-skarn deposits and Fe-oxide Cu-Au deposits. However, many characteristics of the Haveri deposit, including tectonic setting, host lithologies, alteration types, proximity to I-type granitoids and P-T-X conditions of formation, compare favourably with other Early Proterozoic deposits within the TSB and Fennoscandia, as well as many of the deposits in the Cloncurry district of Australia. Consequently, the Haveri deposit can be seen to represent a high-T, Ca-rich member of the recently recognised Fe-oxide Cu-Au group of deposits.
2
Li, Longming, and 李龙明. "The crustal evolutionary history of the Cathaysia Block from the paleoproterozoic to mesozoic." PG_Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45693596.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Wang, Wei, and 王伟. "Sedimentology, geochronology and geochemistry of the proterozoic sedimentary rocks in the Yangtze Block, South China." PG_Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hdl.handle.net/10722/196033.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The South China Craton comprises the Yangtze Block in the northwest and Cathaysia Block in the southeast. Located in the southeastern Yangtze Block, the Jiangnan Orogen formed through the amalgamation between the Yangtze and Cathaysia Blocks. The Yangtze Block has sporadically exposed Archean rocks in the north, Paleoproterozoic to Mesoproterozoic volcano-sedimentary sequences in the southwest and widespread Neoproterozoic sedimentary sequences accompanied by syn-sedimentary igneous rocks on the western and southeastern margins. The late Paleoproterozoic to early Mesoproterozoic Dongchuan, Dahongshan and Hekou groups in the southwestern Yangtze Block formed in a series of fault-controlled, rift-related basins associated with the fragmentation of the supercontinent Columbia. These sedimentary sequences were deposited between 1742 and 1503 Ma, and recorded continuous deposition from alluvial fan and fluvial sedimentation during the initial rifting to deep marine sedimentation in a passive margin setting. Sedimentation during initial rifting received felsic detritus mainly from adjacent continents, whereas sedimentation in a passive margin basin received detritus from felsic to intermediate rocks of the Yangtze Block. Paleoproterozoic to Mesoproterozoic rift basins in the southwestern Yangtze Block are remarkably similar to those of north Australia and northwestern Laurentia in their lower part (1742-1600 Ma), but significantly different after ca. 1600 Ma. The southwestern Yangtze Block was likely connected with the north Australia and northwestern Laurentia in Columbia but drifted away from these continents after ca. 1600 Ma. Traditionally thought Mesoproterozoic sedimentary sequences in the southeastern Yangtze Block are now confirmed to be Neoproterozoic in age and include the 835-830 Ma Sibao, Fanjingshan and Lengjiaxi groups, and 831-815 Ma Shuangqiaoshan and Xikou groups. These sequences are unconformably overlain by the ~810-730 Ma Danzhou, Xiajiang, Banxi, Heshangzheng, Luokedong and Likou groups. The regional unconformity likely marked the amalgamation between the Yangtze and Cathaysia Blocks and thus occurred at ~815-810 Ma. The lower sequences (835-815 Ma) received dominant Neoproterozoic (~980-820) felsic to intermediate materials in an active tectonic setting related to continental arc and orogenic collision, whereas the upper sequences represent sedimentation in an extensional setting with input of dominant Neoproterozoic granitic to dioritic materials (~740-900 Ma). The upper parts of the Shuangqiaoshan and Xikou groups, uncomfortably underlain by lower units, are molasse-type assemblages with additional input of pre-Neoproterozoic detritus, representing accumulation of sediments in a retro-arc foreland basin associated with the formation of the Jiangnan Orogen. Stratigraphic correlation, similarly low-δ18O and tectonic affinity of igneous rocks from different continents suggest that the Yangtze Block should be placed in the periphery of Rodinia probably adjacent to northern India. Paleoproterozoic (~2480 Ma and ~2000 Ma) and Early Neoproterozoic (711-997 Ma) were the most important periods of crustal and magmatic events of the southeastern Yangtze Block, but there is a lack of significant Grenvillian magmatism. Early Neoproterozoic magmatism highlights the contribution from both juvenile materials and pre-existing old crust, whereas ~2480 Ma and ~2000 Ma events are marked by reworking of pre-existing continental crust. Magmatism at 1600-1900 Ma was dominated by reworking of pre-existing crust, whereas the 1400-1600 Ma magmatic event recorded some addition of juvenile materials.
published_or_final_version
Earth Sciences
Doctoral
Doctor of Philosophy
4
Zhao, Junhong, and 趙軍紅. "Geochemistry of neoproterozoic arc-related plutons in the Western margin of the Yangtze Block, South China." PG_Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B40203748.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Harris, Charles William. "A sedimentological and structural analysis of the Proterozoic Uncompahgre Group, Needle Mountains, Colorado." Dissertation, Virginia Polytechnic Institute and State University, 1987. http://hdl.handle.net/10919/79644.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Siliciclastic sediments of the Proterozoic Uncompahgre Group can be subdivided into stratigraphic units of quartzite (Q) and pelite (P); these units include a basal, fining- and thinning-upward retrogradational sequence (Q1-P1) that records the transition from an alluvial to a shallow-marine setting. Overlying the basal sequence are three thickening- and coarsening-upward progradational sequences (P2-Q2, P3-Q3 and P4-Q4) that were influenced by tide-, storm- and wave-processes. The progradational units are subdivided into the following facies associations in a vertical sequence. Outer-to inner-shelf mudstones, Bouma sequence beds and storm beds of association A are succeeded by inner-shelf to shoreface cross-stratified sandstones of association B. Conglomerates and cross-bedded sandstones of upper association B represent alluvial braid-delta deposits. Tidal cross-bedded facies of the inner shelf/shoreface (association C) gradationally overlie association B. Interbedded within the tidal facies in upper association C are single pebble layers or <1 m-thick conglomerate beds and trough cross-bedded pebbly sandstones. Single pebble layers could be due to storm winnowing whereas conglomerates and pebbly sandstones may record shoaling to an alluvial/ shoreface setting. A temporally separated storm/alluvial and tidal shelf model best explains the origin and lateral distribution of facies in the progradational sequences. The presence of smaller progradational increments in the mudstone dominated units (P3) and the recurrence of facies associations in the thick quartzite/conglomerate units (Q2, Q3, Q4) suggests that external cyclic factors controlled sedimentation. A composite relative sea level curve integrating glacio-eustatic oscillations and long-term subsidence may account for the evolution of the thick progradational sequences of the Uncompahgre Group. Sedimentary rocks of the Uncompahgre Group have been subjected to polyphase deformation and greenschist facies metamorphism. Phase 1 structures (localized to the West Needle Mountains) include bedding-parallel deformation zones, F₁ folds and an S₁ cleavage. Phase 2 coaxial deformation resulted in the development of upright, macroscopic F₂ folds and an axial-planar crenulation cleavage, S₂. In addition basement-cover contacts were folded. Phase 3 conjugate shearing generated strike-parallel offset in stratigraphic units, a macroscopic F₃ fold, and an S₃ crenulation cleavage. In addition, oblique-slip, reverse faults were activated along basement-cover contacts. The Uncompahgre Group unconformably overlies and is inferred to be parautochthonous upon ca. 1750 Ma gneissic basement that was subjected to polyphase deformation (DB) and amphibolite facies metamorphism. Basement was intruded by ca. 1690 Ma granitoids. Deformation of gneissic and plutonic basement together with cover (DBC) postdates deposition of the Uncompahgre Group. The structural evolution of the Uncompahgre Group records the transition from a ductile, north-directed, fold-thrust belt to the formation of a basement involved “megamullion" structure which was subjected to conjugate strike-slip faulting to accommodate further shortening. DBC deformation may be analogous to the deep foreland suprastructure of an orogenic belt that developed from ca. 1690 to 1600 Ma in the southwestern U.S.A ..
Ph. D.
6
Hill, Robert E. (Robert Einar). "Stratigraphy and sedimentology of the Middle Proterozoic Waterton and Altyn Formations, Belt-Purcell Supergroup, southwest Alberta." Electronic Thesis or Dissertation, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63330.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Johnson, Shannon D. "Structural geology of the Usakos Dome in the Damara Belt, Namibia." Thesis, Stellenbosch : Stellenbosch University, 2008. http://hdl.handle.net/10019.1/50457.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (MSc)--Stellenbosch University, 2005.
ENGLISH ABSTRACT: The northeast-trending south Central Zone (sCZ) of the Pan-African Damara belt in central Namibia is structurally characterized by kilometer-scale, northeast-trending dome structures developed in Neoproterozoic rocks of the Damara Sequence. A number of different structural models have been proposed for the formation of these domes in the literature. This study describes the structural geology of the Usakos dome. The study discusses the structural evolution of the dome within the regional framework of the cSZ that represents the high-grade metamorphic axis of the Damara Belt, characterized by voluminous Pan-African granitoids. The northeastern part of the Usakos dome is developed as an upright- to northwestverging anticlinorium containing a steep southeasterly-dipping axial planar foliation. The northeast fold trend persists into the southwestern parts of the Usakos dome. However, this southwestern core of the dome is inundated by synkinematic granitic sheets. Distinct marker horizons of the Damara Sequence outcrop as screens within the granite, preserving a ghost stratigraphy. These screens illustrate the position and orientation of second-order folds. Significantly, most of the stratigraphy of the Damara Sequence is overturned in these folds. For example, some second-order anticlines developed in the northeastern parts of the Usakos dome can be followed along their axial traces into the southwestern hinge of the dome, where they appear as synformal anticlines, i.e. synformal structures cored by older strata, plunging towards the northeast. The inverted stratigraphy and northeasterly fold plunges suggest the northeast-trending folds are refolded by second-generation, northwest-trending folds, thus, forming kilometer-scale Type-2 interference folds. The resulting fold geometries are strongly non-cylindrical, approaching southwest-closing sheath folds indicating a top-to-the-southwest material transport. Lower-order folds in this overturned domain show radial fold plunges, plunging away from the centre of the dome core, as well as a shallowly-dipping schistosity. The close spatial and temporal relationship between granite intrusion and the formation of the southwest-vergent, sheath-type folds, radial distribution of fold plunges and the subhorizontal foliation confined to the southwestern hinge of the Usakos dome are interpreted to signify the rheological weakening and ensuing collapse of the developing first-order Usakos dome immediately above the synkinematic granite intrusions. Orogenparallel, southwest-vergent sheath folds and top-to-the southwest extrusion of the southwestern parts of the Usakos dome and northwest-vergent folding and thrusting characterizing the northeastern extent of the Usakos dome are both responses to the northwest-southeast- directed contractional tectonics recorded during the main collisional phase in the Damara belt. On a regional scale, the Usakos dome represents the link between the foreland-vergent northeastern part of the sCZ and the southwest-vergent, high-grade southwestern parts of the sCZ. The results of this study illustrate how dramatic variations in structural styles may be caused by the localized and transient rheological weakening of the crust during plutonic activity.
AFRIKAANSE OPSOMMING: Die noordoos-strekkende, suidelike Sentrale Sone (sSS) van die Pan-Afrikaanse Damara gordel in sentraal Namibië word karakteriseer deur kilometer-skaal, noordoosstrekkende koepel strukture, ontwikkel in die Neoproterozoïkum gesteentes van die Damara Opeenvolging. 'n Aantal verskillende struktuur modelle is voorgestel in die literatuur vir die vorming van hierdie koepels. Hierdie ondersoek beskryf die struktuur geologie van die Usakos koepel. Die ondersoek bespreek die strukturele ontwikkeling van die koepel in die regionale konteks van die sSS, wat die hoë graadse metamorfe magmatiese as van die Damara Gordel verteenwoordig, en karakteriseer word deur omvangryke Pan-Afrikaanse granitoïede. Die noordoostelike gedeelte van die Usakos koepel is ontwikkel as 'n antiklinorium met 'n vertikale- tot noordwestelike kantelrigting. wat 'n steil hellende, suidoostelike asvlak planêre foliasie bevat. Die noordoos-strekkende plooiing kom voor tot in die suidwestelike kern van die Usakos wat ingedring is deur sinkinematiese granitiese plate. Die posisie en oriëntasie van tweede-orde plooie is afgebeeld in die graniete deur 'n skimstratigrafie wat preserveer is deur duidelike merker horisonne van die Damara Opeenvolging. Die stratigrafie van die Damara Opeenvolging is opmerklik meestal omgekeer in hierdie plooie. Byvoorbeeld, tweede-orde antikliene ontwikkel in die noordoostelike gedeelte van die Usakos koepel kan gevolg word langs hul asvlakspore tot in die suidwestelike skarnier van die koepel, waar dit voorkom as sinforme antikliene, d.w.s. sinforme strukture met ouer strata in die kern wat na die noordooste duik. Die omgekeerde stratigrafie en noordoostelike plooi duiking impliseer dat die noordoosstrekkende plooie weer geplooi is deur tweede-generasie, noordwes-strekkende plooie, wat dus aanleiding gegee het tot die vorming van kilometer-skaal, tipe-2 interferensie plooie. Die gevolglike plooi geometrieë is uitdruklik nie-silindries, en toon 'n oorgang na skede plooie met 'n sluiting na die suidweste, wat dui op 'n bokant-na-die-suidweste materiaal vervoer. Laer-orde plooie in die omgekeerde domein vertoon radiale duiking van die plooie, weg van die middelpunt van die koepel kern, sowel as 'n vlak hellende skistositeit. Die noue ruimtelike en temporele verwantskap tussen graniet intrusie en die vorming van skede-tipe plooie met 'n kantelrigting na die suidweste, die radiale verspreiding van plooi duiking, en die subhorisontale foliasie wat beperk is tot die suidwestelike skarnier van die Usakos koepel, word interpreteer as 'n aanduiding van die reologiese verswakking en die gevolglike ineenstorting van die ontwikkelende eerste-orde Usakos koepel, onmiddellik aan die bokant van die sinkinematiese graniet intrusies. Die orogeenparalleie skede plooie met kantelrigting na die suidweste en bokant-na-die-suidweste ekstrusie van die suidwestelike gedeelte van die Usakos koepel, en plooiing met kantelrigting na die noordweste en stootverskuiwing wat kenmerkend is van die noordoostelike gedeelte van die Usakos koepel, is beide 'n reaksie op die noordwessuidoos- gerigte vernouings tektoniek opgeteken gedurende die hoof botsings fase in die Damara gordel. Op 'n regionale skaal verteenwoordig die Usakos koepel die verbinding tussen die noordoostelike gedeelte van die sSS met 'n voorland kantelrigting. en die hoë graad suidwestelike gedeelte van die sSS met 'n kantelrigting na die suidweste. Die resultate van hierdie ondersoek toon aan hoe dramatiese variasies in struktuur style veroorsaak kan word deur die gelokaliseerde en kortstondige reologiese verswakking van die kors gedurende plutoniese aktiwiteit.
8
Gibson, R. G. "Structural studies in a Proterozoic gneiss complex and adjacent cover rocks, west Needle Mountains, Colorado." Dissertation, Virginia Polytechnic Institute and State University, 1987. http://hdl.handle.net/10919/76096.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Proterozoic rocks in the Needle Mountains include ca. 1750 Ma amphibolite-grade, metavolcanic and metaplutonic gneisses and ca. 1690 Ma granitoids that comprise the basement to the siliciclastic Uncompahgre Group. The mafic and felsic gneisses underwent synkinematic metamorphism and two phases of isoclinal folding and foliation development during DB, prior to emplacement of the ca. 1690 Ma plutons. DBC deformation caused folding of DB fabrics in the gneisses, development of a subvertical, east-striking foliation in the granitoids, and generation of a macroscopic sigmoidal foliation pattern throughout the area prior to 1430 Ma. DBC structures in the basement are correlated with macroscopic structures in the Uncompahgre Group, which was deformed into an east-trending cuspate synclinorium during this event. Gently plunging mineral lineations and asymmetric kinematic indicators in the basement record a component of dextral strike-slip shearing in domains of east-striking foliation and sinistral shearing in areas of northeast-striking foliation. A model for DBC involving the development of conjugate strike-slip shear zones in response to north-northwest shortening is most consistent with the kinematic and fabric orientation data. A zone of phyllite, derived largely from basement, occurs everywhere along the basement-cover contact. Kinematic indicators along and near the contact record upward movement of the cover relative to the basement on each side of the synclinorium and imply that the cover rocks are parautochthonous. Stratigraphic facing of the cover rocks away from the basement supports the interpretation of this contact as an unconformity at the base of the Uncompahgre Group. Alteration of the basement rocks along this contact involved hydration and the loss of CaO, MgO, SiO₂, and Na₂O. The phyllite zone is interpreted as a metamorphosed and deformed regolith that localized out-of-synform movement while the basement and its parautochthonous cover were folded together during DBC. Rocks in the Needle Mountains comprise part of the Colorado Province, one of several terranes that were possibly accreted to the Archean Wyoming Craton during the Proterozoic. Age constraints on the timing of deformation indicate that DB and DBC are representative of two regionally extensive deformational episodes. Pre-1700 Ma deformation is attributed to the assembly of volcanogenic terranes and their accretion to the Wyoming Craton along the Cheyenne Belt. Post-1700 Ma deformation resulted from regional north-northwest crustal shortening induced by tectonic interactions along the southern margin of the Colorado Province. These results support the hypothesis that terrane accretion was important in the Proterozoic crustal evolution of southwestern North America.
Ph. D.
9
Teitz, Martin W. "Late proterozoic Yellowhead and Astoria Carbonate Platforms, southwest of Jasper, Alberta." Electronic Thesis or Dissertation, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63371.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Simpson, Edward L. "Sedimentology and tectonic implications of the Late Proterozoic to Early Cambrian Chilhowee Group in southern and central Virginia." Dissertation, Virginia Polytechnic Institute and State University, 1987. http://hdl.handle.net/10919/53660.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Few detailed facies analyses of rift to passive-margin transitions have been undertaken in exhumed orogenic belts. In the central Appalachians, the Chilhowee Group records such an evolution. The Unicoi and basal Hampton Formations record the transition from rifting to opening of the Iapetus Ocean. The majority of the Hampton Formation and the overlying Erwin Formation represent an overall regressive sequence punctuated by five progradational packages that accumulated along a passive margin. The rift to passive·margin phases of sedimentation in the central Appalachians reflect a continuum from fault·influenced to thermotectonic subsidence. Alluvial sediments and intercalated basalts of the lower Unicoi Formation developed in a rift setting. Paleontological data indicate that rifting continued into lower Cambrian time. The upper Unicoi Formation represents the incipient phase of passive-margin sedimentation related to a first-order, sea level rise. Differences in degree of crustal attenuation controlled the distribution of sedimentary environments during transgression. On the most attenuated crust to the east, initial transgressive facies consist of tidal sandwave and sandridge deposits intercalated with proximal and medial braid-pIain deposits. As transgression progressed cratonwards onto less attenuated crust, tidal sedimentation was supplanted by tide- and wave-influenced sedimentation characterized by sandwave complexes, tidal inlets and longshore bedforms. Drowning at the top of the Unicoi Formation is indicated by outer-shelf black mudstones. Deepening may have been enhanced by continued movement along listric faults throughout the incipient phase of passive-margin development. Examination of outcrops of the Hampton and Erwin Formations on different thrust sheets has permitted an across-strike reconstruction of the Early Cambrian Chilhowee shelf in space and time. Progradational packages developed under storm- and fair·weather wave conditions. Coarsening· and thickening-upward sequences on westerly thrust sheets were generated during progradation of shoreface, inner-shelf and outer-shelf environments. Outer-shelf facies predominate on easterly thrust sheets. Intertidal-flat deposits on the most westerly thrust sheet erosively overlie progradational shoreface sediments and developed during transgression in an embayment in which the tidal wave was amplified. More distal transgressive deposits consist of fining- and thinning·upward sequences with glauconitic horizons, and condensed sections in mudstones.
Ph. D.

Книги з теми "Geology, Stratigraphic Proterozoic":

1
Wisconsin--Madison), International Proterozoic Symposium (1981 University of. Proterozoic geology: Selected papers from an International Proterozoic Symposium. Boulder, Colo: Geological Society of America, 1986.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Dawes, Peter R. The Proterozoic Thule Supergroup, Greenland and Canada: History, lithostratigraphy, and development. Copenhagen, Denmark: Geological Survey of Denmark and Greenland, Ministry of Environment and Energy, 1997.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Aitken, James D. Uppermost Proterozoic formations in central Mackenzie Mountains, Northwest Territories. Ottawa, Ont., Canada: Energy, Mines and Resources Canada, 1989.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Greene, Robert C. Stratigraphy of the Late Proterozoic Murdama Group, Saudi Arabia. [Menlo Park, CA: U.S. Geological Survey], 1993.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Frarey, M. J. Proterozoic geology of the Lake Panache-Collins Inlet area, Ontario. Ottawa, Canada: Geological Survey of Canada, 1985.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Blacet, Philip M. Proterozoic geology of the Brady Butte area, Yavapai County, Arizona. [Reston, Va.?]: Dept. of the Interior, U.S. Geological Survey, 1985.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Sims, P. K. Geology and geochemistry of Early Proterozoic rocks in the Dunbar area, northeastern Wisconsin. Washington: U.S. G.P.O., 1992.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Volkert, Richard A. Geochemistry and stratigraphic relations of Middle Proterozoic rocks of the New Jersey Highlands. Reston, Va: U.S. Geological Survey, 1999.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Blacet, Philip M. Proterozoic geology of the Brady Butte area, Yavapai County, Arizona: A study of the stratigraphy and structure of the Proterozoic stratified and associated intrusive rocks. Washington: U.S. G.P.O., 1985.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Bryant, Bruce. Geology, geochronology, geochemistry, and Pb-isotopic compositions of Proterozoic rocks, Poachie region, west-central Arizona: A study of the east boundary of the Proterozoic Mojave crustal province. [Reston, VA]: U.S. Dept. of the Interior, U.S. Geological Survey, 2001.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Geology, Stratigraphic Proterozoic":

1
Young, Grant M. "Earth's Earliest Extensive Glaciations: Tectonic Setting and Stratigraphic Context of Paleoproterozoic Glaciogenic Deposits." In The Extreme Proterozoic: Geology, Geochemistry, and Climate, 161–81. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/146gm13.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Varsányi, Irén, and Lajos Ó. Kovács. "The Stratigraphic Significance of Water Geochemistry." In Springer Geology, 879–83. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04364-7_166.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Jenkins, Gregory S., Christopher P. McKay, and Mark A. S. McMenamin. "Introduction: The Proterozoic." In The Extreme Proterozoic: Geology, Geochemistry, and Climate, 1–4. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/146gm01.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Waters, Colin N., Jan Zalasiewicz, Mark Williams, Simon J. Price, Jon R. Ford, and Anthony H. Cooper. "Evidence for a Stratigraphic Basis for the Anthropocene." In Springer Geology, 989–93. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04364-7_187.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Sogut, Ali Riza, Kerim Kocak, and Ahmet Güzel. "Stratigraphic Characteristics of the Derinkuyu Area, Nevsehir, Turkey." In Springer Geology, 591–95. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04364-7_114.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Miall, Andrew D. "Implications for Petroleum Geology." In The Geology of Stratigraphic Sequences, 375–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03380-7_17.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Özkan, Ali Müjdat. "Stratigraphic Features of the Yeşilyurt–Konak Area (Malatya, Turkey)." In Springer Geology, 687–91. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04364-7_130.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Pondrelli, Monica, Angelo Pio Rossi, Loredana Pompilio, and Lucia Marinangeli. "Application of Sequence-Stratigraphic Concepts to Mars: Eberswalde Crater." In Springer Geology, 349–54. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04364-7_68.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Wright, J. B. "The Proterozoic of West Africa." In Geology and Mineral Resources of West Africa, 38–50. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-015-3932-6_4.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Branca, Stefano, Mauro Coltelli, and Gianluca Groppelli. "Stratigraphic Methodology for the New Geological Map of Etna Volcano." In Springer Geology, 1217–21. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04364-7_233.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Geology, Stratigraphic Proterozoic":

1
Al Busaidy, T. "Stratigraphic Trapping The Natih Formation in North Oman." In Second Arabian Plate Geology Workshop 2010. Netherlands: EAGE Publications BV, 2010. http://dx.doi.org/10.3997/2214-4609.20145620.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Ferri, L., M. Fervari, M. T. Galli, and P. Rocchini. "Semi-Automatic Detection of Subsurface Seismic Bodies of Relevant Stratigraphic Interest." In EAGE Conference on Geology and Petroleum Geology of the Mediterranean and Circum-Mediterranean Basins. European Association of Geoscientists & Engineers, 2000. http://dx.doi.org/10.3997/2214-4609.201406000.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Flecker, R., R. M. Ellam, and W. Krijgsman. "Geochemical and Stratigraphic Evolution of the Mediterranean in the Late Miocene." In EAGE Conference on Geology and Petroleum Geology of the Mediterranean and Circum-Mediterranean Basins. European Association of Geoscientists & Engineers, 2000. http://dx.doi.org/10.3997/2214-4609.201406036.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Desaubliaux, G., R. Eschard, D. Bekkouche, and A. Hamel. "Stratigraphic Architecture Of The Triassic Reservoir in The Saharan Province, Algeria." In EAGE Conference on Geology and Petroleum Geology of the Mediterranean and Circum-Mediterranean Basins. European Association of Geoscientists & Engineers, 2000. http://dx.doi.org/10.3997/2214-4609.201406043.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Hughes, G. W. "Stratigraphic Aspects of the Upper Jurassic to Lower Cretaceous of Saudi Arabia." In Fourth Arabian Plate Geology Workshop. Netherlands: EAGE Publications BV, 2012. http://dx.doi.org/10.3997/2214-4609.20142775.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Droste, H. J. "Upper Jurassic to Lower Cretaceous Stratigraphic Model for the Eastern Arabian Plate." In Fourth Arabian Plate Geology Workshop. Netherlands: EAGE Publications BV, 2012. http://dx.doi.org/10.3997/2214-4609.20142782.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Biteau, J. J., A. le Marrec, M. le Vot, and J. M. Masset. "The Aquitaine Basin, Stratigraphic and Structural History, Petroleum Geology." In 2nd EAGE St Petersburg International Conference and Exhibition on Geosciences. European Association of Geoscientists & Engineers, 2006. http://dx.doi.org/10.3997/2214-4609-pdb.20.a007.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Droste, H. J. "Stratigraphic Framework of the Natih Formation in the Sultanate of Oman." In Second Arabian Plate Geology Workshop 2010. Netherlands: EAGE Publications BV, 2010. http://dx.doi.org/10.3997/2214-4609.20145350.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Memesh, A. M. S., Y. M. Le Nindre, S. M. Dini, and D. Vaslet. "Pre-Buwaib and Late Valanginian Unconformities in Outcrop: Inherited Concepts, Facts, and Stratigraphic Consistency." In Fourth Arabian Plate Geology Workshop. Netherlands: EAGE Publications BV, 2012. http://dx.doi.org/10.3997/2214-4609.20142795.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Chattoraj, Shovan Lal, Santanu Banerjee, P. K. Saraswati, and Udita Bansal. "Origin, Depositional Setting and Stratigraphic Implications of Palaeogene Glauconite of Kutch." In Recent Studies on the Geology of Kachchh. Geological Society of India, 2016. http://dx.doi.org/10.17491/cgsi/2016/105413.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Geology, Stratigraphic Proterozoic":

1
Frarey, M. J., and R. T. Cannon. Proterozoic Geology, Lake Panache-Collins Inlet, Ontario. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1985. http://dx.doi.org/10.4095/120363.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Schnieders, B. R., and M. C. Smyk. Proterozoic and Archean Geology: Hemlo To Winston Lake. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/132355.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Lane, L. S., and R. B. MacNaughton. Central Foreland NATMAP Project: Proterozoic to Devonian stratigraphic sections in British Columbia and Yukon. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/299863.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Franklin, J. M. Proterozoic Geology of the Thunder Bay To Marathon area. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/132359.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Lane, L. S., and R. B. MacNaughton. Introduction to stratigraphic sections from the Central Foreland NATMAP Project area: Proterozoic to Devonian successions. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/306301.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Frarey, M. J. Proterozoic geology of the Lake Panache-Collins Inlet area, Ontario. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1985. http://dx.doi.org/10.4095/120375.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Norris, D. K., and L. D. Dyke. Proterozoic. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1997. http://dx.doi.org/10.4095/208890.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Peterson, T. D., and P. Born. Archean and Lower Proterozoic geology of western Dubawnt Lake, Northwest Territories. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1994. http://dx.doi.org/10.4095/193823.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Cook, D. G., and I. R. Mayers. Reflection Seismic Interpretation of the Proterozoic Geology; Colville Hills Region, Northwest Territories. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1990. http://dx.doi.org/10.4095/130909.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Sevigny, J. H. Field and Stratigraphic Relations of Amphibolites in the Late Proterozoic Horsethief Creek Group, northern Adams River area, British Columbia. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1987. http://dx.doi.org/10.4095/122536.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії

Будь ласка, вимкніть ваш блокувальник реклами

Adblock logo Adblock logo Adblock logo

"Grafiati" – це незалежний сервіс, що забезпечує унікальну якість оформлення бібліографічних посилань. Ви можете користуватися нашим сайтом безоплатно, дозволивши показ реклами, або оформити передплату.

Передплатити