Добірка наукової літератури з теми "Geology"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Geology".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

За допомогою хмари тегів ви можете побачити ще більше пов’язаних тем досліджень, а відповідні кнопки після кожного розділу сторінки дозволяють переглянути розширені списки книг, статей тощо на обрану тему.

Статті в журналах з теми "Geology":

1

Roemmele, Christopher. "The Impact of Curriculum and Instructional Choices on Undergraduate Students in Introductory Geology." International Research in Higher Education 4, no. 3 (August 2019): 17. http://dx.doi.org/10.5430/irhe.v4n3p17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This research investigated the impact of an introductory geology class on undergraduate students' attitudes toward and conceptual understanding of geology. The purpose was to identify students' geologic blindness, a construct of disinterest, disdain, and unawareness of geology, geologic processes, and their relationship to humans, by assessing students’ views on curricular and pedagogical choices. A convergent parallel mixed-methods research design was conducted. The participants consisted of 289 students enrolled over two semesters in an introductory geology class for non-majors. Specific to content and instruction, students found the format of rock and mineral labs and exams difficult and in need of change. They expressed positive attitudes about the hands-on, collaborative nature of these labs, and observation skills to perform them. Curriculum topics judged more interesting were deemed less difficult to understand, and vice versa, and that there was general understanding of geology’s broader themes of tectonics and time. Open-ended responses from participants, and interviews with key informants provided further evidence for these results. Students indicated that explicit instruction on the topic relevance, cross-topic connections, and on-going assessment and the use of a variety of visualizations and collaborative work would help to improve understanding and attitudes. The results provide insight into ways to improve introductory geology courses by addressing geologic blindness.
2

Li, Yaoguo, Aline Melo, Cericia Martinez, and Jiajia Sun. "Geology differentiation: A new frontier in quantitative geophysical interpretation in mineral exploration." Leading Edge 38, no. 1 (January 2019): 60–66. http://dx.doi.org/10.1190/tle38010060.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Geophysics aims to image subsurface geologic structure and identify different geologic units. While the former has dominated the interpretation of applied geophysical data, the latter has received much less attention. This appears to have persisted despite applications such as those in mineral exploration that inherently rely on the inference of geologic units from geophysical and geologic observations. In practice, such activities are routinely carried out in a qualitative manner. Thus, it is meaningful to examine this aspect and to develop a system of quantitative approaches to identify different geologic units. The development of geophysical inversions in the last three decades makes such interpretation tools possible. We refer to this newly emerging direction as geology differentiation and the resultant representation of geology model as a quasi-geology model. In this article, we will provide an overview of the historical background of geology differentiation and the current developments based on physical property inversions of geophysical data sets. We argue that integrating multiple physical property models to differentiate and characterize geologic units and work with the derived quasi-geology model may lead to a step change in maximizing the value of geophysical inversions.
3

Adhitya, Bagus, Hari Wiki Utama, Anggi Deliana Siregar, Magdalena Ritonga, and Yulia Morsa Said. "Pembuatan maket geologi struktur sebagai bahan ajar di Jurusan Teknik Kebumian Fakultas Sains dan Teknologi Universitas Jambi." Transformasi: Jurnal Pengabdian Masyarakat 17, no. 2 (December 2021): 279–86. http://dx.doi.org/10.20414/transformasi.v17i2.4020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
[Bahasa]: Geologi Struktur adalah salah satu mata kuliah yang ada pada kurikulum Program Studi Teknik Geologi, Teknik Pertambangan dan Teknik Geofisika yang dikelola oleh Jurusan Teknik Kebumian. Mata kuliah ini mempelajari bentukan atau struktur batuan penyusun kerak bumi, arsitektur batuan penyusun kerak bumi, dan bagaimana proses pembentukan struktur geologi. Identifikasi masalah yang ditemui adalah belum optimalnya hasil pembelajaran pada mata kuliah geologi struktur pada masa pandemi karena tidak adanya alat praktikum yang dapat digunakan untuk menggantikan kegiatan observasi lapangan. Di sisi lain observasi lapangan terhadap struktur geologi secara langsung sulit untuk dilaksanakan dan memiliki resiko yang cukup besar. Solusi dari permasalahan tersebut adalah dilakukan pembuatan maket geologi struktur taman bumi (Geopark) Merangin, Jambi. Kegiatan pengabdian kepada masyarakat ini bertujuan untuk membuat maket geologi struktur sebagai bahan ajar yang dapat menjadi alternatif pembelajaran dan praktikum pengukuran struktur dasar di masa pandemi Covid-19. Metode yang digunakan dalam menyelesaikan permasalahan mitra adalah metode problem solving. Dari hasil pengukuran strike & dip diperoleh kedudukan pada sayap kiri lipatan maket geologi struktur berarah N 218oE/38o (Barat Daya) sedangkan pada sayap kanan lipatan maket geologi struktur berarah N 25oE/24o (Timur Laut). Maket geologi yang dibuat memiliki struktur berupa antiklin dengan bagian tengah mengalami pergeseran karena struktur sesar. Hasil analisis data struktur sesar merupakan sesar mendatar naik kanan, dengan kedudukan bidang sesar N 42°E/66°, Plunge/Bearing 80°N 87°E, dan Rake 45°. Pembuatan maket geologi struktur sangat bemanfaat dalam menambah pemahaman mahasiswa pada mata kuliah geologi struktur. Mahasiswa dapat mengetahui pengukuran struktur dasar sebelum terjun ke lapangan secara langsung sehingga mereka akan lebih siap saat melakukan kuliah lapangan. Kata Kunci: maket geologi struktur, bahan ajar, geopark Merangin [English]: Structural Geology is one of the courses in the curriculum of Geological Engineering, Mining Engineering, and Geophysical Engineering managed by the Department of Earth Engineering. This course studies the formation or structure of the rocks that make up the earth's crust, the architecture of the rocks that make up the earth's crust, and how the geological structure is formed. The problems identified were the non-optimal learning outcomes in the structural geology course during the pandemic and the absence of practical tools that can be used for field observation activities. On the other hand, field observations of geological structures directly are very difficult to carry out and have great risks. The solution to this problem is to make a geological structure scale model of the Earth Park (Geopark) Merangin, Jambi. This community service program aims to create structural geology mockups as teaching materials that can be alternative learning and practicum for measuring basic structures during the Covid-19 pandemic. The method used in this program was problem-solving. From the result of the strike and dip measurement, the position was obtained on the left-wing of the geological model fold of the structure withN N 218oE/38o direction (Southwest). While on the right-wing of the geological model fold of the structure, the direction was N 218oE/38o (Northeast). The developed geological scale model has a structure in the form of an anticline with the center shifting due to the fault. Data analysis resulted in the position of the fault plane N 42°E/66°, Plunge/Bearing 80°N 87°E, and Rake 45°. Making a structural geology scale model is very useful in increasing students' understanding of the structural geology course. They can know the measurement of basic structures before going to the field directly so that the students will be better prepared when doing the field trip. Keywords: structural geology mockup, teaching materials, merangin geopark
4

Sun, Jiajia, Aline Tavares Melo, Jae Deok Kim, and Xiaolong Wei. "Unveiling the 3D undercover structure of a Precambrian intrusive complex by integrating airborne magnetic and gravity gradient data into 3D quasi-geology model building." Interpretation 8, no. 4 (July 2020): SS15—SS29. http://dx.doi.org/10.1190/int-2019-0273.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Mineral exploration under a thick sedimentary cover naturally relies on geophysical methods. We have used high-resolution airborne magnetic and gravity gradient data over northeast Iowa to characterize the geology of the concealed Precambrian rocks and evaluate the prospectivity of mineral deposits. Previous researchers have interpreted the magnetic and gravity gradient data in the form of a 2D geologic map of the Precambrian basement rocks, which provides important geophysical constraints on the geologic history and mineral potentials over the Decorah area located in the northeast of Iowa. However, their interpretations are based on 2D data maps and are limited to the two horizontal dimensions. To fully tap into the rich information contained in the high-resolution airborne geophysical data, and to further our understanding of the undercover geology, we have performed separate and joint inversions of magnetic and gravity gradient data to obtain 3D density contrast models and 3D susceptibility models, based on which we carried out geology differentiation. Based on separately inverted physical property values, we have identified 10 geologic units and their spatial distributions in 3D which are all summarized in a 3D quasi-geology model. The extension of 2D geologic interpretation to 3D allows for the discovery of four previously unidentified geologic units, a more detailed classification of the Yavapai country rock, and the identification of the highly anomalous core of the mafic intrusions. Joint inversion allows for the classification of a few geologic units further into several subclasses. We have demonstrated the added value of the construction of a 3D quasi-geology model based on 3D separate and joint inversions.
5

Bathrellos, G. D. "An overview in urban geology and urban geomorphology." Bulletin of the Geological Society of Greece 40, no. 3 (June 2018): 1354. http://dx.doi.org/10.12681/bgsg.16888.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Worldwide is observed an expansion in urban areas. In Greece a proportional phenomenon is mentioned. More than 52% of the Greek population now lives in the two metropolitan municipalities of Athens and Salonica. For this reason grows up the scientific interest to urban geology and urban geomorphology. Urban Geology is the application of geologic knowledge to the planning and management of metropolitan areas. Its domain spans both regional geology and applied geology. Urban Geomorphology is the study of man as a physical process of change whereby he metamorphoses a more natural terrain to an anthropogene cityscape. In such a context Urban Geomorphology is the surface component of Urban Geology, which is one of the important subfields of environmental geology. The urban geomorphology is related with the management of natural hazards and the spatial planning. Engineering geology and urban planning need to interface with geomorphology in hazardous areas.
6

Osipov, V. I. "About fundamental losses in engineering geology." Геоэкология. Инженерная геология. Гидрогеология. Геокриология, no. 5 (September 2019): 89–91. http://dx.doi.org/10.31857/s0869-78092019589-91.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The paper considers the viewpoint of the author, i.e., the full member of the Russian Academy of Sciences Prof. V.I. Osipov, on the problem raised by Prof. V.T. Trofimov, the head of the Department of Engineering and ecological geology at the Moscow State University, in his article published in “Inzhenernaya geologiya” journal, about the losses in engineering geology in the last decades. Both the objective and subjective reasons of this science degradation are mentioned.
7

de Mendonça Figueirôa, Silvia Fernanda. "Brazilian geology for Brazilian students: The general geology textbook published by John Casper Branner in 1906." Earth Sciences History 35, no. 2 (January 2016): 375–86. http://dx.doi.org/10.17704/1944-6178-35.2.375.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper focuses on a somewhat neglected subject/object—textbooks—intending to discuss and analyze the case of the book Geologia elementar preparada com referencia especial aos estudantes brazileiros e à geologia do Brazil [Elementary geology prepared with special reference to Brazilian students and to Brazilian geology], written by the North American geologist John Casper Branner (1850–1922), first published in 1906, with a second edition in 1915. It is my aim to address some questions: How and why was this textbook written? Was it molded by the expectations of its author, its publisher or the general public? How far did it express the conceptions and paradigms of the time, national styles/tendencies, or momentous controversial issues? Did the individual reputation of its author ensure its circulation? Was it inspired by, or based upon, other textbooks? I expect that the arguments contribute to the understanding that textbooks and their authors are not neutral objects or passive actors, but they actually play a creative role in the development of a scientific discipline—in this case, Brazilian geology, through the relations between North and South America and their respective geoscientific communities.
8

Young, Davis A. "The Biblical Flood as a Geological Agent: A Review of Theories." Paleontological Society Papers 5 (October 1999): 119–34. http://dx.doi.org/10.1017/s1089332600000565.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Mainstream scientists, including Woodward, Buckland, Prestwich, Suess, and Ryan and Pitman, have proposed a variety of theories to explain the biblical deluge. The extent of the flood in these theories has decreased as empirical knowledge of global geology has increased. In contrast, contemporary flood geology attempts to explain most of the geologic record in terms of a single, year-long, global catastrophe. Flood geology exists in the context of an alternate scientific universe with its own institutions, organizations, journals, and meetings. The views of Leonard Brand, Steven Austin, and Walt Brown, representative of flood geology, are discussed.
9

Saini-Eidukat, Bernhardt, Donald P. Schwert, and Brian M. Slator. "Geology explorer: virtual geologic mapping and interpretation." Computers & Geosciences 28, no. 10 (December 2002): 1167–76. http://dx.doi.org/10.1016/s0098-3004(02)00036-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Häusler, Hermann. "Military Geology and Comprehensive Security Geology – Applied Geologic Contributions to New Austrian Security Strategy." Austrian Journal of Earth Sciences 108, no. 2 (2015): 302–16. http://dx.doi.org/10.17738/ajes.2015.0027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Geology":

1

Metzger, Nicolai. "Structural controls on the shear zone hosted, IOCG-style Kiskamavaara Cu-Co-Au mineralization." Student thesis, Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-74068.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Sweden is the largest producer of iron ore in the European Union, as well as amongst the top producers for base and precious metals. Much of its mineral wealth derives from northern Norrbotten, type locality of the Kiruna-type-magnetite-apatite ores. Besides the massive iron ore bodies, the region is further recognized as important iron-oxide-copper-gold (IOCG) province, with the world class, Aitik Cu-Au-Ag-(Mo) deposit as its most prominent example (1061 Mt with 0,22% Cu; 0,15ppm Au; 1.3ppm Ag), (Wanhainen et al. 2012, Boliden 2017). The close spatial relation between Aitik, further IOCG style mineralization and the Nautanen Deformation Zone (NDZ), a crustal-scale, approximately N-S trending shear system provides important insights into the complex connection between deformation, reactivated fault systems and the different mineralizing events affecting the area during the Svecofennian period (1.9-1.8 Ga). Whereas this connection is well constrained within the Gällivare mining district (c.f. Martinsson and Wanhainen 2004, Wanhainen et al. 2012, Bauer et al. 2018, Lynch et al. 2018), the northern and southern continuations of the NDZ and its potential to host further mineralization remain unknown. During this study, an area around the Kiskamavaara Cu-Co-Au mineralization was investigated to link its tectonic evolution with regional metallogenic events and compare its alterations and structural regime to that of the highly prospective NDZ. It is suggested that the region was affected by at least two deformation events, D1 and D2, both causing a characteristic alteration assemblage, structural patterns and related mineralization. The identification of pseudotachylitic structures and supergene mineralization argues for a late, brittle, upper crustal event with hydrothermal character during D2. Constraining the Kiskamavaara Cu-Co-Au mineralization to this event allows to propose a genetic link to the known IOCG-style mineralization in the Nautanen area that are generally related to a late, 1.80 Ga period of hydrothermal activity. It is suggested that the Cu-Au mineralization in the Kiskamvaara and Nautanen area formed under similar conditions, hence arguing for a single high strain zone in favor over several locally constrained zones of crustal weakening. If supported in further studies, this finding of a highly prospective NDZ beyond its known extend, might justify more intense exploration in highly strained lithologies between the Kiskamavaara and Nautanen area, as well as north of Mattavaara and south of Gällivare.
2

Tollefsen, Elin. "Chemical controls on ikaite formation." Licentiate thesis, monograph, Stockholms universitet, Institutionen för geologiska vetenskaper, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-156839.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Moberg, Jesper. "Naturliga halter av metaller i sjöar och vattendrag med avseende på lokal geologi i Barseleområdet." Student thesis, Uppsala universitet, Institutionen för geovetenskaper, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-353770.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Bakgrundshalter för olika metaller i svenska sjöar och vattendrag stämmer inte alltid överens med geologin i lokala områden, som kan ha anrikats många gånger högre än beräknade halter i jordskorpan. Detta är fallet i Barseleområdet, norra Sverige där Agnico Eagle genomför undersökningsarbeten med fokus på guld. Syftet med arbetet är att undersöka vad som anses vara naturliga halter av metaller i området med avseende på lokal geologi och jämföra dessa med bedömda bakgrundshalter. Fokus ligger på metallerna arsenik, antimon, bly och zink där även dess geokemiska beteende undersöks. Vattendata från vattendrag och sjöar från tio lokaler i området kring fyndigheten under perioden 2001–2016 har bearbetats. Analyserna har gjorts med analyspaket V2 (grundämnen i sötvatten). Bakgrundshalter har erhållits från SLU och Sveriges miljöinstitut som jämförts med vattendata från området. Resultaten visar att arsenik och antimon har genomgående högre halter än beräknade bakgrundshalter, där antimon, bly och zink generellt ligger i linje med bakgrundshalterna beroende på klassning av vattnet. Faktorer som pH, hydrologiska förhållanden samt löslighet och rörlighet i vatten visar sig ha stor påverkan på om halterna av metaller kommer överskrida bakgrundshalterna. Adsorption till järnoxider är ett exempel på en faktor som påverkar metallers rörlighet i vatten, och därmed om de kommer anrikas eller inte.
The levels of metals measured in individual Swedish lakes and waterways (local scale) do not always correspond to levels expected from knowledge of the underlying geology (regional scale), and in some cases can be orders of magnitude higher than expected. This is the case in the Barsele area, northern Sweden, where Agnico Eagle are exploring for gold. The purpose of this work is to investigate the natural levels of metals in waters with regard to local geology in the area, and compare these with calculated background levels. The study focuses on the metals arsenic, antimony, lead and zinc, and their geochemical behavior. Water data from ten sites during 2001–2016 have been studied. The analyzes were carried out with V2 analyzing package. Background levels were obtained from SLU and Sweden's environmental institute, which have been compared with water data from the area. The results show that arsenic and antimony have consistently higher levels than calculated background levels, while levels of lead and zinc generally correspond to background levels, depending on the classification of the water. Factors such as pH, hydrological conditions, and solubility and mobility in water have a major influence on whether or not the levels of metals exceed the calculated background levels. Adsorption to iron oxides is an example of a factor that decreases the mobility of metals in water.
4

Sarlus, Zimer. "Geochemical and geochronological constraints on 1.88 and 1.80 Ga magmatic events in the Gällivare area, northern Sweden." Licentiate thesis, comprehensive summary, Luleå tekniska universitet, Geovetenskap och miljöteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-25689.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Gällivare area is situated in northern Norrbotten, Sweden, and hosts the Aitik Cu-Au deposit and the Malmberget Fe deposit. In addition, more than 17 mineral prospects and mineralizations are present, among these the currently developed Nautanen Cu-Au deposit. All deposits are hosted within Paleoproterozoic volcanic and volcano-sedimentary successions intruded and surrounded by multiple generations of intrusive suites, including large bodies of ultramafic to mafic layered complexes. Detailed field mapping combined with geochemical and petrological investigations and geochronology have revealed suites of igneous rocks ranging in composition from ultramafic-mafic, intermediate to felsic. Main key igneous rocks include 1) tholeiitic, ultramafic-mafic layered intrusive complexes; 2) calc-alkaline mafic to intermediate plutonic and volcanic units; 3) calc-alkaline, mafic-intermediate dykes and sills; 4) calc-alkaline and shoshonitic granitoids. U-Pb multigrain zircon SIMS analysis combined with lithogeochemical investigations suggest two magmatic episodes at 1.88 and 1.80 Ga, respectively, with coeval mafic-felsic magmatism including the generation of voluminous layered complexes. Based on their MORB-type, tholeiitic character, these layered complexes are suggested to have formed in an extensional setting, preferentially in a back-arc environment. U-Pb multigrain zircon SIMS analysis and field mapping also reveal that granitoids in the area range from 1886 to 1779 Ma with the oldest granitoids containing mafic enclaves. This suggests magma interaction between basic and felsic magma sources. Geochemical data suggest generation of granitoids in a volcanic arc environment in a mainly post-collisional setting. Results suggest the formation of layered complexes and a volcanic arc system in an extensional setting followed by a subsequent compressional phase of arc accretion producing post-collisional granitoids. The 1.88 Ga event that generated the ultramafic-mafic layered complexes is associated with a back-arc setting generated in response to 1.90 Ga NNE trending subduction. The later event at ~1.80 Ga generating voluminous mafic-felsic units is associated with the TIB event which is also coupled to the regional IOCG overprint.
The Gällivare area is situated in northern Norrbotten, Sweden, and hosts the Aitik Cu-Au deposit and the Malmberget Fe deposit. In addition, more than 17 mineral prospects and mineralizations are present, among these the currently developed Nautanen Cu-Au deposit. All deposits are hosted within Paleoproterozoic volcanic and volcano-sedimentary successions intruded and surrounded by multiple generations of intrusive suites, including large bodies of ultramafic to mafic layered complexes. Detailed field mapping combined with geochemical and petrological investigations and geochronology have revealed the role of intrusive igneous events and their control on ore formation. Main key igneous rocks include 1) tholeiitic, ultramafic-mafic layered intrusive complexes; 2) calc-alkaline mafic to intermediate plutonic and volcanic units; 3) calc-alkaline, mafic-intermediate dykes and sills; 4) calc-alkaline and shoshonitic granitoids. U-Pb multigrain zircon SIMS analysis combined with litho-geochemical investigations suggest two magmatic episodes at 1.88 and 1.80 Ga, respectively, with coeval mafic-felsic magmatism including the generation of voluminous layered complexes. Based on their MORB-type, tholeiitic character, these layered complexes are suggested to have formed in an extensional setting, preferentially in a back-arc environment. U-Pb multigrain zircon SIMS analysis and field mapping also reveal that granitoids in the area range from 1886 to 1779 Ma with the oldest granitoids containing mafic enclaves. This suggests magma interaction between basic and felsic magma sources. Geochemical data suggest generation of granitoids in a volcanic arc environment in a mainly post-collisional setting. Results suggest the formation of layered complexes and a volcanic arc system in an extensional setting followed by a subsequent compressional phase of arc accretion producing post-collisional granitoids. The 1.88 Ga event that generated the ultramafic-mafic layered complexes is is associated with a back-arc setting generated in response to 1.90 Ga NNE trending subduction. The later event at ~1.80 Ga generating voluminous mafic-felsic units is associated with the TIB event also coupled to the regional IOCG overprint.
Godkänd; 2016; 20160518 (zimsar); Nedanstående person kommer att hålla licentiatseminarium för avläggande av teknologie licentiatexamen. Namn: Zmar Sarlus Ämne: Malmgeologi /Ore Geology Uppsats: Geochemical and Geochronological Constraints on 1.88 and 1.80 Ga Magmatic Events in the Gällivare Area, Northern Sweden Examinator: Biträdande professor Christina Wanhainen, Institutionen för samhällsbyggnad och naturresurser, Avdelning: Geovetenskap och miljöteknik, Luleå tekniska universitet. Diskutant: PhD Paul Evins, WSP Sverige AB, Stockholm. Tid: Fredag 17 juni, 2016 kl 10.00 Plats: F341, Luleå tekniska universitet
5

Mattsson, Tobias. "En petrologisk studie av lavor och en mantelxenolit från Fogo, Kap Verde." Student thesis, Uppsala universitet, Berggrundsgeologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-185139.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Alla Kap Verdes öar är av vulkaniskt ursprung. Fogo är den enda ön i Kap Verdes arkipelag som fortfarande är vulkaniskt aktiv, med 30 registrerade utbrott sedan människor bosatte sig på ön för cirka 500 år sedan. Detta gör Fogo till en av de mest aktiva vulkanerna på jorden. Fogos lavor är viktiga att studera för att få en förståelse för vulkanens magmasystem och förhindra framtida katastrofer. Lavorna är mörka och innehåller mycket fenokryster utav olivin och clinopyroxen, och i enstaka prover hittas apatit (inneslutningar i pyroxener) och amfibol. Den petrografiska undersökningen tyder på att lavorna är basaniter eller melanonefeliniter. På Fogo förekommer både Pahoehoe- och Aa- lavor. En mantelxenolit ger insikt till lavornas ursprung. Den studerade xenoliten har en protogranulär textur och består främst av olivin (Fo86-88) med mindre förekomster av ortopyroxen, clinopyroxen och phlogopitaggregat. Clinopyroxenfenokrysterna i lavorna är mineralet diopsid (MgCaSi2O6). Fosterithalten i olivinfenokryster är (Fo81-84). Zonering på kristaller visar magmaevolutionen vid ett utbrott. Zoneringen i clinopyroxenfenokrysten är i kärnan av kristallen omvänd och övergår sedan till normal. Det vill säga till en början en ökning av MgO för sedan minska mot fenokrystens kant. Detta tyder på att fenokrysterna började kristallisera samtidigt som ny smälta tillfördes för att sedan övergå till en fraktionering av magman. En ökning av MgO på ytterkanten av fenokrysten kan tyda på att en primitiv smälta tillförts magman. Xenoliten har sitt ursprung under Moho på ett maximalt djup av 270 km.
6

Oxenstierna, Johan. "Remote Sensing and Statistical Analysis of Fracture Populations Around Lake Thingvallavatn, SW Iceland." Student thesis, Uppsala universitet, Institutionen för geovetenskaper, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-182201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This study aims at a description and statistical analysis of tectonic and magmatic fractures in the Western Volcanic Zone (WVZ) on Iceland. Two fracture populations are studied with respect to their distance to the Hengill volcano: The southern area is between 0-10 kilometers from the volcano and the northern area is between 16-25 kilometers from the volcano. The description and analysis of fractures is carried out separately for the two areas as well as for the two areas together to test different mapping procedures, statistical methods and the influence of the volcano on the properties of the fractures. There are various reasons for considering this an important study: Firstly, this is not an extensively researched field and there are many unanswered methodological questions on how to map and describe the fractures. In this study, problems such as how maps are stitched and georeferenced, how fractures are divided into segments and mapped in respect to topography, are discussed. The potential errors caused by these methodological problems are concluded to be large enough to significantly affect statistical tests analyzing fracture populations. In the analysis part, the properties of the fracture populations are studied using Kolmogorov Smirnov and χ 2 goodness-of-fit tests, scatter-plots, simple count and ratios among other methods. It was found that the fracture populations follow distributions that are not easily defined, but that they are of the same and quantifiable type. With more data their common distribution could therefore be modeled, and the factor by which the Hengill volcano affects the strike of fractures per distance unit from the volcano could be calculated. It was also found that magmatic fractures are formed in a similar, but not necessarily the same stress-field as tectonic fractures. Therefore change in magma pressure might change the local stress regime around magmatic fractures, affecting their strike.
7

Andersson, Barbro. "Pressure-Temperature Estimates on the Tjeliken Eclogite from Northern Jämtland, Swedish Caledonides." Student thesis, Uppsala universitet, Institutionen för geovetenskaper, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-196118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Eclogites are important in order to understand orogenic processes, since their presence indicates high-pressure metamorphism. In northern Jämtland, Swedish Caledonides, eclogites have been found at several places in the Seve Nappe Complex (SNC). The mountain Tjeliken in the Lower Seve Nappe is one of them. Dating relates the high-pressure metamorphism to the Late Ordovican subduction of the Baltoscandian margin during the closure of the Iapetus Ocean. In this study new P-T conditions are presented for the Tjeliken eclogite based on petrographical and geochemical studies of an eclogite sampled on the top of Tjeliken in summer 2010. Peak assemblage consists of garnet + omphacite + phengite + quartz. New peak conditions are calculated to c. 2.7 GPa and 700°C. These P-T conditions are in the upper part of the quartz stability field, close to the quartz - coesite stability line. The new P-T conditions correspond well to other P-T calculations of eclogites in northern Jämtland and indicate a deep subduction of the Baltoscandian margin already in the Late Ordovician.
8

Karlsson, Pia. "Sulfidmineral i Salatrakten : med en introduktion i opakmikroskopi." Student thesis, Uppsala universitet, Institutionen för geovetenskaper, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-196982.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Sala är beläget i Bergslagen och bergarterna hör därmed till den svekofenniska berggrunden. Berggrunden domineras av 1.9-1.87 Ga sedimentära-, vulkaniska- och metamorfa bergarter. Vad man vet idag har metamorfosen i Bergslagen skett vid temperaturer på 500-650 ºC och på ett djup av 10-15 km. Salas berggrund är till stor del uppbyggd av karbonater, hälleflinta, kvartsdioritporfyrit, granofyr och granit. Karbonatstenen är till största delen magnesiumrik och övervägande dolomitisk till sammansättningen. Ett mer än 300 meter mäktigt dolomitlager innehåller Sala gruvas zink- och silvermalmer. I sydost begränsas dolomiten av graniter och i väster av hälleflintor. Sala gruvas primära malmmineral är järnrik zinkblände, magnetkis, blyglans, magnetit och pyrit. Viktiga associations- och spårmineral är bland annat kopparkis, gudmundit, molybdenglans, boulangerit, diaforit, freibergit och mineral tillhörande Ag-Hg-Sb systemet. Sju polerprover från Salaområdet analyserades med hjälp av reflektionsmikroskop och två dessutom med elektronmikrosond. Blyglans detekterades i alla prover. Zinkblände, pyrit och tetrahedrit återfanns i 6 av 7 prover, rent silver hittades i ett prov från Stenhavet och magnetkis hittades i alla prover från Stensbotten. Kopparkis, AgHg-amlagam och magnetit kunde ses i cirka hälften av proverna. Gudmundit återfanns i två av proverna plockade vid Stensbotten och två av proverna tros innehålla molybdenglans. Ett av proverna undersökt med WDS-analys innehåller ren antimon samt tre andra antimon- och silvermineral. Metamorf påverkan har diskuterats från de texturella sambanden.
9

Magnusson, Johan. "Jordens metallresurser : En kort överblick över våra viktigaste industrimetaller och deras bildningssätt." Student thesis, Uppsala universitet, Institutionen för geovetenskaper, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-211080.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Metaller och gruvdrift är ett ständigt aktuellt ämne. Återanvändning av metaller blir allt viktigare då metaller betraktas som en ändlig resurs. Men är de verkligen det, och i sådana fall: ur vilket perspektiv? Arbetet behandlar bildningsprocesser för några av våra viktigaste metaller - guld, järn, nickel och koppar - samt en handfull sällsynta metaller vars användning ökat: indium, gallium och germanium. Arbetet börjar med att kortfattat diskutera begreppen malmer och mineral. Därefter beskrivs de processer som enligt rådande vetenskaplig teori ligger till grund för de viktigaste av dessa malmförekomster. Där behandlas även tidsbegreppet för malmbildande processer. Beräknade tillgångar på dessa metaller i dagsläget, samt beräknade reserver tas också upp. Vidare diskuteras prisutvecklingen på dessa metaller och avslutningsvis förs ett resonemang kring prisutveckling med fokus på den globala marknaden och tillväxtekonomierna i Kina, Ryssland, Indien och Brasilien samt andra mindre men likväl växande ekonomier i världen.
10

Andersson, Joel. "Structural evolution of two ore-bearing Palaeoproterozoic metasupracrustal belts in the Kiruna area, Northwestern Fennoscandian Shield." Licentiate thesis, comprehensive summary, Luleå tekniska universitet, Geovetenskap och miljöteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-72034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this project, two key study areas in the northwestern Fennoscandian Shield are under investigation. The “Western supracrustal belt” and “Central Kiruna area” are both located along lithotectonically comparable Rhyacian-Orosirian metasupracrustal belts and both areas are characterized by iron oxide-apatite (IOA) and iron oxide-copper-gold (IOCG)-style mineralizations and related hydrothermal alterations. The area is in general well studied but the structural evolution remains unresolved. In order to build a structural framework for the Kiruna area, the number of deformation events, kinematics, geometries, mineralogy and interrelationships of the dominant structures are under focus in this study. The paired structural-alteration configuration is targeted in order to constrain the relative timing of dominant structures and mineral alteration parageneses in order to use these systems as structural vectors of mineralized systems. Furthermore, the Orosirian stratigraphy is re-evaluated in order to constrain the pre-compressional geological history of the study areas. This is important as it controls the character of the structural development during subsequent compression forming the sub-surface architecture as we see today. The Orosirian stratigraphy suggests the development of a syn-extensional basin in Kiruna where iron oxide-apatite deposits were emplaced. This basin was subsequently inverted accompanied by shearing, folding, and faulting during D1 and D2, refolded during D3, and further fractured during D4. The shortening directions inferred during the deformation events suggest a clockwise rotation of the stress field from NE-SW (D1) to E-W (D2) and finally NNW-SSE (D3). Regional scapolite ± albite alteration is interpreted to be coeval with regional amphibole + magnetite alteration during D1. Mineral alteration parageneses linked to D2 is more potassic in character and often structurally controlled by shear zones. As a regional generalization, the potassic dominated D2-alteration is characterized by sericite ± epidote ± biotite ± chlorite ± magnetite ± sulphide ± K-feldspar. Fe- and Cu-sulphides are concentrated into brittle D2-structures suggesting that a IOCG-style of mineralization can be linked to the potassic D2 event. This implies that iron oxide-apatite emplacement can be linked to the basin development phase, whereas epigenetic Fe- and Cu-sulphides are linked to the basin inversion-phase of the geological evolution, and hence, separated in time and probably not directly genetically linked in Kiruna.

Книги з теми "Geology":

1

Walker, A. S. Geologic hazards: Geology and resources. Denver, CO (P.O. Box 25286, Denver 80225): U.S. Dept. of the Interior, U.S. Geological Survey, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Doelling, Hellmut H. The geololgy of Kane County, Utah: Geology, mineral resources, geologic hazards. Salt Lake City, Utah (606 Black Hawk Way, Salt Lake City 84108-1280): Utah Geological and Mineral Survey, Utah Dept. of Natural Resources, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Craig, James D. Geologic report for the Beaufort Sea planning area, Alaska: Regional geology, petroleum geology, environmental geology. Anchorage, Alaska: U.S. Dept. of Interior, Minerals Management Service, Alaska OCS Region, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Craig, James D. Geologic report for the Beaufort Sea planning area, Alaska: Regional geology, petroleum geology, environmental geology. Anchorage, Alaska: U.S. Dept. of Interior, Minerals Management Service, Alaska OCS Region, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Craig, James D. Geologic report for the Beaufort Sea planning area, Alaska: Regional geology, petroleum geology, environmental geology. Anchorage, Alaska: U.S. Dept. of Interior, Minerals Management Service, Alaska OCS Region, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Craig, James D. Geologic report for the Beaufort Sea planning area, Alaska: Regional geology, petroleum geology, environmental geology. Anchorage, Alaska: U.S. Dept. of Interior, Minerals Management Service, Alaska OCS Region, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

McLean, A. C. Geology for civil engineers. 2nd ed. London: Unwin Hyman, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

McLean, A. C. Geology for civil engineers. 2nd ed. London: Allen & Unwin, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

McLean, A. C. Geology for civil engineers. 2nd ed. London: Unwin Hyman, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Thurston, Dennis K. Geologic report for the Chukchi Sea planning area, Alaska: Regional geology, petroleum geology, and environmental geology. Anchorage, Alaska: U.S. Dept. of the Interior, Minerals Management Service, Alaska OCS Region, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Geology":

1

Goudie, Andrew, and Heather Viles. "Geology." In World Geomorphological Landscapes, 27–35. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8020-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pavlović, Pavle, Nikola Kostić, Branko Karadžić, and Miroslava Mitrović. "Geology." In World Soils Book Series, 55–86. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-017-8660-7_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Marker, Brian R. "Geology." In Encyclopedia of Earth Sciences Series, 396–97. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73568-9_136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Asch, Kristine, Stephen J. Mathers, and Holger Kessler. "Geology." In Springer Handbook of Geographic Information, 525–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-540-72680-7_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Brown, Gary, and Bruno A. Mies. "Geology." In Vegetation Ecology of Socotra, 21–31. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4141-6_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Göncüoğlu, Mehmet Cemal. "Geology." In World Soils Book Series, 57–73. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64392-2_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Horvath, Joan, and Rich Cameron. "Geology." In 3D Printed Science Projects Volume 2, 23–49. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-2695-7_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kington, John A. "Geology." In Frederic W. Harmer: A Scientific Biography, 15–61. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07704-8_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Marker, Brian R. "Geology." In Selective Neck Dissection for Oral Cancer, 1–2. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-12127-7_136-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chaney, Ronald C. "Geology." In Marine Geology and Geotechnology of the South China Sea and Taiwan Strait, 11–30. Boca Raton : CRC Press, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003102328-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Geology":

1

Allmendinger, Richard W., and Paul Karabinos. "IMPROVING GEOLOGIC MAPPING WITH COMPUTATIONAL FIELD GEOLOGY." In GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-334376.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gentile, Richard J., and Robyn L. Daniels. "THE TRAVELING GEOLOGY EXHIBIT - BRINGING GEOLOGY TO THE PEOPLE." In Joint 53rd Annual South-Central/53rd North-Central/71st Rocky Mtn GSA Section Meeting - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019sc-326265.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Weisenfluh, Gerald A., Stephen F. Greb, and Rebecca Wang. "COAL GEOLOGY INFORMATION: COAL CORE DESCRIPTION AND MINING GEOLOGY." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-304493.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bubniak, I. M., A. M. Bubniak, and O. D. Gavrilenko. "Digital field geology." In Geoinformatics: Theoretical and Applied Aspects 2020. European Association of Geoscientists & Engineers, 2020. http://dx.doi.org/10.3997/2214-4609.2020geo087.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Stephenson, M., F. Bullough, S. Geiger, M. Bridden, P. Ringrose, D. Schofield, and R. Davey. "Geology of Decarbonisation." In 81st EAGE Conference and Exhibition 2019. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201900931.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gusev, Vladimir V. "GEOLOGY AND SOCIETY." In Treshnikov readings – 2021 Modern geographical global picture and technology of geographic education. Ulyanovsk State Pedagogical University named after I. N. Ulyanov, 2021. http://dx.doi.org/10.33065/978-5-907216-08-2-2021-251-252.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Clary, Renee, Athena M. Owen, and Eric Shows. "GEOLOGY AROUND ME: LEVERAGING LOCAL ENVIRONMENTS IN ONLINE INTRODUCTORY GEOLOGY COURSES." In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-358064.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sellers, Victoria, Stephen M. Moysey, Kelly Best Lazar, and Lisa Benson. "CHANGES IN GEOLOGY INTEREST AFTER A VIRTUAL REALITY GEOLOGY FIELD EXPERIENCE." In GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-338616.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Matveev, Ivan, Gleb Shishaev, Grachik Eremyan, Vasily Demyanov, Oksana Popova, Sergey Kaygorodov, Boris Belozerov, Iuliia Uzhegova, Dmitry Konoshonkin, and Mikhail Korovin. "Geology Driven History Matching." In SPE Russian Petroleum Technology Conference. Society of Petroleum Engineers, 2019. http://dx.doi.org/10.2118/196881-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Beyr, Petr. "Military geology and geopolitics." In 2015 International Conference on Military Technologies (ICMT). IEEE, 2015. http://dx.doi.org/10.1109/miltechs.2015.7153658.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Geology":

1

Sanford, B. V., G. B. J. Fader, and P. N. Moir. Regional geology and geophysics 8: bedrock geology. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/210609.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Eisbacher, G. H. Structural geology. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1998. http://dx.doi.org/10.4095/209775.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

mayr, U., T. de Freitas, and B. Beauchamp. Economic geology. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1998. http://dx.doi.org/10.4095/209776.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yorath, C. J., D. K. Norris, and F. G. Young. Regional Geology. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1987. http://dx.doi.org/10.4095/126948.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bednarski, J. Surficial geology. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2016. http://dx.doi.org/10.4095/298878.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dallimore, S. R., and J. S. Vincent. Onshore Geology. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/132218.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Blasco, S. M., and J. F. Lewis. Offshore Geology. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/132219.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dredge, L. A., A. S. Dyke, and D. A. Hodgson. Surficial geology. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2007. http://dx.doi.org/10.4095/223362.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mayr, U., T. de Freitas, and B. Beauchamp. Regional geology. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1998. http://dx.doi.org/10.4095/209769.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hamblin, A. P. Bedrock geology. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2016. http://dx.doi.org/10.4095/298874.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії
Current page language: Ukrainian.
You might want to see the page in this language: English.
Change language