Добірка наукової літератури з теми "Image moment"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Image moment".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Image moment":

1

Hui, Fan, Hai Feng Wang, and Jin Jiang Li. "Image Registration Based on Feature Points Krawtchouk Moments." Applied Mechanics and Materials 40-41 (November 2010): 584–89. http://dx.doi.org/10.4028/www.scientific.net/amm.40-41.584.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
An image registration based on feature points Krawtchouk moments is proposed. Moments are the shape descriptors based on region. Krawtchouk moments are a set of discrete orthogonal moments and are more suitable for describing two-dimensional images compared to Zemike, Legendre moments. In the image registration based on feature points Krawtchouk moments, Krawtchouk moment invariants of the feature points neighborhood that have been extracted are solved, and then these Krawtchouk moment invariants constitute feature vectors used to describe the feature points, finally feature points are matched by calculating the Euclidean distance of feature vectors. The results of experiments show that Krawtchouk moment is simple and effective to describe image and is independent of rotation, scaling, and translation of the image.
2

Wang, Mei, E. Ye Wang, and Guo Hua Pan. "Image Quality Assessment Based on Invariant Moments Similarity." Advanced Materials Research 546-547 (July 2012): 565–69. http://dx.doi.org/10.4028/www.scientific.net/amr.546-547.565.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
To resolve the problems of the image quality assessment issue and the algorithm adaptability for different image size and deformation, this paper proposes a image quality assessment algorithm based on Invariant Moments Similarity. Firstly, Hu invariant moments values of original image and evaluated image are computed. Secondly the invariant moments distance is completed between original image and evaluated image. At last, the method assess the restoration image quality depend on the invariant moment distance. The experimental result shows that the algorithm result is better than MSE, PSNR, SSIM for the same-size images. And the algorithm based on invariant moment similarity can evaluate different image-size and deformation images with low computing-complexity. The assessment experimental result for difference actual images certifies the algorithm effectiveness.
3

Zhang, Chao Xin, and Ping Xi. "Analysis of Gaussian-Hermite Moment Invariants on Image Geometric Transformation." Applied Mechanics and Materials 519-520 (February 2014): 557–61. http://dx.doi.org/10.4028/www.scientific.net/amm.519-520.557.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Gaussian-Hermite moments and their invariants have been widely used in image processing and pattern recognition. The moments are strictly invariant for the continuous function. However, the digital images are discrete. The image function and the moment imvariants may change during image geometric transformation. To address this problem, an analysis with respect to the fluctuation of moment invariants on image geometric transformation is presented. The guidance is provided as well to minimizing the fluctuation of the Gaussian-Hermite moments.
4

Yang, Jianwei, Ming Li, Zirun Chen, and Yunjie Chen. "Cutting Affine Moment Invariants." Mathematical Problems in Engineering 2012 (2012): 1–12. http://dx.doi.org/10.1155/2012/928161.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The extraction of affine invariant features plays an important role in many fields of image processing. In this paper, the original image is transformed into new images to extract more affine invariant features. To construct new images, the original image is cut in two areas by a closed curve, which is called general contour (GC). GC is obtained by performing projections along lines with different polar angles. New image is obtained by changing gray value of pixels in inside area. The traditional affine moment invariants (AMIs) method is applied to the new image. Consequently, cutting affine moment invariants (CAMIs) are derived. Several experiments have been conducted to evaluate the proposed method. Experimental results show that CAMIs can be used in object classification tasks.
5

Hameed, Vazeerudeen Abdul. "Orthogonal Moment Invariant Function for Image Processing." Journal of Computational and Theoretical Nanoscience 16, no. 8 (August 1, 2019): 3400–3403. http://dx.doi.org/10.1166/jctn.2019.8299.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Orthogonal moments are of great importance in image processing due to their high discriminatory capability. Orthogonal moment invariant functions like Legendre moments and Complex Zernike moments are known for high computational complexity and/or they are complex valued. This paper presents a new orthogonal moment function that is real valued. The formulation is appraised to prove that it is computationally less complex when compared to the existing moment functions. The proposed orthogonal moment functions are appraised over their reversible nature to obtain the original data. The new moment functions are also appraised for their discriminating ability through derivations and experiments. Invariance properties such as scaling, translation and rotational invariance are studied over the new formulation to demonstrate the use of the functions over image processing applications that involve invariance to image transformations.
6

Wan, Li. "Image Classification Combined with Fusion Gaussian–Hermite Moments Feature and Improved Nonlinear SVM Classifier." Journal of Advanced Computational Intelligence and Intelligent Informatics 22, no. 6 (October 20, 2018): 875–82. http://dx.doi.org/10.20965/jaciii.2018.p0875.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
With the development of computer technology, data mining, artificial intelligence, and image-processing technology have been applied to medical diagnosis. Image classification is one of the main technologies of medical image processing, which can be used to determine whether a patient suffers from breast cancer according to x-ray images of the breast. To achieve reliable classification of breast images, an image classification method combined with a fusion Gaussian–Hermite moments feature and improved nonlinear support vector machine (SVM) classifier is proposed. The proposed fusion Gaussian–Hermite moments features can improve the robustness and distinguish the ability of features by constructing Gaussian–Hermite invariant moments according to invariant moment theory and constructing a Gaussian–Hermite Fisher moment according to Fisher’s idea. The proposed improved nonlinear SVM classifier can improve the efficiency and accuracy of the classifier through eigen decomposition and sample learning. Experimental results demonstrate that the proposed method has a high accuracy rate for breast x-ray image classification.
7

Zhang, Chao Xin, Ping Xi, and Mo Dai. "Gaussian-Geometric Moments and its Application in Feature Matching." Advanced Materials Research 718-720 (July 2013): 2113–19. http://dx.doi.org/10.4028/www.scientific.net/amr.718-720.2113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Since the 7 famous Hus invariants had been introduced in 1960s, the moment invariants play an important role in image analysis and pattern recognition. In this paper, we propose a new moment called Gaussian-Geometric moment, and derived their translation and rotation invariants. One significant conclusion drawn is that the rotation invariants of Gaussian-Geometric moments have the identical forms to those of geometric moments.The Gaussian-Geometric moments and the geometric moments both can represent the image information, difference is that the Gaussian-Geometric moment can represent the center information of an image and the geometric moments represent the edge information of an imageonly. This is particularly evident in the performance of high order ones. Another important property of Gaussian-Geometric moments is that it has a scale parameter which allows choosing the best scale to represent the interest region of an image. A detailed comparison has been made to test the feature matching capability between the proposed moments and the geometric moments. The results show that the proposed moments perform much better than the geometric ones.
8

Bing, He. "Geometrically Robust Image Watermarking Based on Krawtchouk Invariant Moments." Advanced Materials Research 998-999 (July 2014): 951–56. http://dx.doi.org/10.4028/www.scientific.net/amr.998-999.951.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper an image watermarking based on krawtchouk moment invariants is proposed. krawtchouk moments are selected for image watermarking because image reconstruction with these moments is better than other orthogonal moments like Legendre, Zernike and Tchebichef. Watermarking is composed of the mean of several function of the first and second krawtchouk moment invariants order designed to be invariant to translation, scaling and rotation. The watermarked image is a linear combination of the original image and a weighted nonlinear transformation of original. The weight is computed such that the mean of the watermarked image invariants is a predefined number. Watermark detection is as simple as computing the moment invariants of received image. The experiment results demonstrate the proposed method can obtain better visual effect, meanwhile, it is also robust enough to some image degradation process such as adding noise, cropping, filtering and JPEG compression.
9

Liang, Chen Hua, and Qing Chang. "Weighted Modified Hu Moment in Human Behavior Recognition." Advanced Materials Research 765-767 (September 2013): 2603–7. http://dx.doi.org/10.4028/www.scientific.net/amr.765-767.2603.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
t has been shown that the traditional seven Hu invariant moment does not have scaling invariance with low recognition rate in human behavior recognition. In order to improve the recognition rate, a human behavior recognition method will be put forward in this paper based on weighted modified Hu moments. Firstly, the traditional seven Hu moments will be extended to ten Hu moments to get more image details. Then, the extended Hu moments will be modified to make the Hu moments has the feature of scaling invariance. Lastly, the weighted modified Hu moment will be obtained through least squares method based on minimum variance criterion. The simulation of the sequence images shows that the weighted modified Hu moment can improve the recognition rate effectively.
10

Pham, Nam, Jong-Weon Lee, Goo-Rak Kwon, and Chun-Su Park. "Hybrid Image-Retrieval Method for Image-Splicing Validation." Symmetry 11, no. 1 (January 14, 2019): 83. http://dx.doi.org/10.3390/sym11010083.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Recently, the task of validating the authenticity of images and the localization of tampered regions has been actively studied. In this paper, we go one step further by providing solid evidence for image manipulation. If a certain image is proved to be the spliced image, we try to retrieve the original authentic images that were used to generate the spliced image. Especially for the image retrieval of spliced images, we propose a hybrid image-retrieval method exploiting Zernike moment and Scale Invariant Feature Transform (SIFT) features. Due to the symmetry and antisymmetry properties of the Zernike moment, the scaling invariant property of SIFT and their common rotation invariant property, the proposed hybrid image-retrieval method is efficient in matching regions with different manipulation operations. Our simulation shows that the proposed method significantly increases the retrieval accuracy of the spliced images.

Дисертації з теми "Image moment":

1

Davis, Clayton Paul. "Understanding and Improving Moment Method Scattering Solutions." Diss., CLICK HERE for online access, 2004. http://contentdm.lib.byu.edu/ETD/image/etd620.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Diaz, Angelica Maria. "Optimal image deconvolution by range and noise moment constraints." FIU Digital Commons, 2005. http://digitalcommons.fiu.edu/etd/2799.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Image deconvolution, also known as image restoration, is concerned with the estimation of an uncorrupted image from a noisy, degraded one. The degradation of this image may be caused by defects of optical lenses, nonlinearity of the electro-optical sensor, relative motion between an object and camera, wrong focus, etc. By assuming a degradation model, one can formulate and develop a restoration algorithm. In this thesis, the developed algorithms are iterative deconvolution methods based on noise moment and pixel range constraints. The moments were used to ensure that noise associated with the deconvolution solution satisfies predetermined statistics. The pixel range constraints were also used to ensure the solution is within predetermined pixel value bounds. This addresses the critical issue of noise amplification at those frequencies where the point-spread function (the blurring function) contains frequency nulls. The solution’s dependence on the number of moments is examined and the performance of the deconvolution approach is compared with existing and well established deconvolution methods such as Wiener filtering and inverse filtering.
3

Obaid, Mohammad Hisham Rashid. "Moment Based Painterly Rendering Using Connected Color Components." Thesis, University of Canterbury. Computer Science and Software Engineering, 2006. http://hdl.handle.net/10092/1132.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Research and development of Non-Photorealistic Rendering algorithms has recently moved towards the use of computer vision algorithms to extract image features. The feature representation capabilities of image moments could be used effectively for the selection of brush-stroke characteristics for painterly-rendering applications. This technique is based on the estimation of local geometric features from the intensity distribution in small windowed images to obtain the brush size, color and direction. This thesis proposes an improvement of this method, by additionally extracting the connected components so that the adjacent regions of similar color are grouped for generating large and noticeable brush-stroke images. An iterative coarse-to-fine rendering algorithm is developed for painting regions of varying color frequencies. Improvements over the existing technique are discussed with several examples.
4

Robinson, Matthew J. "Simultaneous lift, moment and thrust measurement on a scramjet in hypervelocity flow /." [St. Lucia, Qld.], 2003. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17611.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Erkers, Julia. "Towards automatic smartphone analysis for point-of-care microarray assays." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-280663.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Poverty and long distances are two reasons why some people in the third world countries hasdifficulties seeking medical help. A solution to the long distances could be if the medical carewas more mobile and diagnostically tests could be performed on site in villages. A new pointof-care test based on a small blood shows promising results both in run time and mobility.However, the method still needs more advanced equipment for analysis of the resultingmicroarray. This study has investigated the potential to perform the analysis within asmartphone application, performing all steps from image capturing to a diagnostic result. Theproject was approach in two steps, starting with implementation and selection of imageanalysis methods and finishing with implementing those results into an Android application.A final application was not developed, but the results gained from this project indicates that asmartphone processing power is enough to perform heavy image analysis within a sufficientamount of time. It also imply that the resolution in the evaluated images taken with a Nexus 6together with an external macro lens most likely is enough for the whole analysis, but furtherwork must be done to ensure it.
6

Alves, Jorge Amaral. "Recognition of ship types from an infrared image using moment invariants and neural networks." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2001. http://handle.dtic.mil/100.2/ADA389842.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Paschalakis, Stavros. "Moment methods and hardware architectures for high speed binary, greyscale and colour pattern recognition." Thesis, University of Kent, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246603.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kolluri, Murali Mohan. "Developing a validation metric using image classification techniques." University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1406819893.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tournier-Lasserve, Catherine. "Modeles d'analyse et de synthese de textures homogenes et inhomogenes." Paris 6, 1987. http://www.theses.fr/1987PA066649.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ce travail presente quelques modeles d'analyse et de synthese de textures planes. On analyse tout d'abord une modelisation statistique par un ensemble restreint des moyennes d'espace du second ordre efficace pour les textures homogenes. Pour les textures inhomogenes, il a fallu envisage une autre modelisation basee sur les moments tripolaires, utile pour retrouver les structures de telles textures. Les modeles ont ete etendus aux textures couleur apres les avoir codees. Enfin, ces modeles ont ete enrichi afin de realiser des syntheses au niveau macroscopique sur des textures fortement structurees
10

Huang, Mu-Ching. "La couleur de la vacuité : analyse de l'esthétique zen du style cinématographique de Yasujiro Ozu." Thesis, Paris 10, 2018. http://www.theses.fr/2018PA100145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Il existe deux approches, culturelle et cinématographique, dans les recherches sur Ozu. En réponse au conflit entre les deux, nous proposons de retourner plus profondément aux idées essentielles du bouddhisme Zen qui affectent la culture et l’esthétique traditionnelles japonaises, pour obtenir un nouveau regard sur la richesse et la profondeur de son cinéma. Le style du « ni s’attacher ni quitter » d’Ozu vient de la pensée bouddhiste « La couleur même est la vacuité. » « Couleur » signifie « phénomène », le bouddhisme affirme que dans l’univers de vacuité, tout phénomène est changeant et temporaire, à savoir impermanent. Dans notre recherche, nous analyserons comment Ozu nous permet d’apercevoir et de comprendre la réalité de l’impermanence de l’univers et de la vie, à travers l’arrangement d’éléments du vide et du plein, et nous inspire à chérir la compagnie des émotions humaines dans la vie impermanente. Nous constaterons que c’est juste l’interpénétration entre le vide et le plein, entre l’absence et la présence, qui fait naître dans le cinéma d’Ozu une tension qui nous touche. Et son cinéma est pour ainsi dire une manifestation de « la couleur de la vacuité »
There are two approaches, cultural and cinematographic, in the study of Yasujiro Ozu’s films. In response to the conflict between the two, and to view the richness and depth of Ozu’s works from a new perspective, I propose to return to Zen Buddhism ideas, which are deeply rooted in Japanese culture and aethetics. Ozu’s style of “neither attaching nor quitting" comes from the Buddhist idea that "Color is Emptiness”. "Color" means "phenomenon"; Buddhism asserts that in the universe of Emptiness, all phenomena are changeable and temporary, namely, impermanent. In my research, I will analyze how Ozu, by arranging elements of emptiness and fullness, reveals to us that impermanence is the reality of universe and life, and inspires us to cherish our companies in the impermanent life. We will find that it is the interpenetration of emptiness and fullness, of absence and presence, which give rise to the tension in Ozu’s films. And these films are the manifestation of “the Color of Emptiness”

Книги з теми "Image moment":

1

Jussim, Estelle. The eternal moment: Essays on the photographic image. New York, NY: Aperture, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Guibert, Hervé. L' image de soi, ou, L'injonction de son beau moment? Bordeaux, France: William Blake and Co., 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fleming, Dan. Making the transformational moment in film: Unleashing the power of the image (with the films of Vincent Ward). Studio City, CA: Michael Wiese Productions, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tuzikov, A. V. Matematicheskai︠a︡ morfologii︠a︡, momenty, stereoobrabotka: Izbrannye voprosy obrabotki i analiza t︠s︡ifrovykh izobrazheniĭ. Minsk: Belorusskai︠a︡ nauka, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tuzikov, A. V. Matematicheskai︠a︡ morfologii︠a︡, momenty, stereoobrabotka: Izbrannye voprosy obrabotki i analiza t︠s︡ifrovykh izobrazheniĭ. Minsk: Belorusskai︠a︡ nauka, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Flusser, Jan, Tomáš Suk, and Barbara Zitová. 2D and 3D Image Analysis by Moments. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119039402.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pawlak, M. Image analysis by moments: Reconstruction and computational aspects. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lillis, Brian. Images of Cork City: Shared moments. Dublin: Nonsuch, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rahman, S. M. Mahbubur, Tamanna Howlader, and Dimitrios Hatzinakos. Orthogonal Image Moments for Human-Centric Visual Pattern Recognition. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9945-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Perry, Beth. More moments in time: Images of exemplary nursing. Edmonton, AB: AU Press, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Image moment":

1

Rahman, S. M. Mahbubur, Tamanna Howlader, and Dimitrios Hatzinakos. "Image Moments and Moment Invariants." In Orthogonal Image Moments for Human-Centric Visual Pattern Recognition, 19–48. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9945-0_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dechamps, Jos. "Second Moment Image Processing (SMIP)." In Medical Images: Formation, Handling and Evaluation, 481–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77888-9_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Biallo, G., L. Caponetti, and A. Distante. "Industrial Parts Identification by Moment Invariants." In Image Analysis and Processing, 251–58. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2239-9_28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kehtarnavaz, N., V. Peddigari, C. Chandan, W. Syed, G. Hillman, and B. Wursig. "Photo-Identification of Humpback and Gray Whales Using Affine Moment Invariants." In Image Analysis, 109–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-45103-x_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zakaria, Marwan F., Louis J. Vroomen, Paul J. A. Zsombor-Murray, and Jan M. H. M. Van Kessel. "A Fast Algorithm For Moment Invariants Generation." In Image Analysis and Processing II, 261–68. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1007-5_28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Shioyama, Tadayoshi, Haiyuan Wu, and Atsushi Iwai. "Detection of Vehicles Using Gabor Filters and Affine Moment Invariants from an Image." In Image Analysis, 942–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-45103-x_124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Do, Minh, Serge Ayer, and Martin Vetterli. "Invariant Image Retrieval Using Wavelet Maxima Moment." In Visual Information and Information Systems, 451–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48762-x_56.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhang, Jian-guo, and Wen-bo Wang. "Education Image Retrieval Method Using Moment Invariants." In International Asia Conference on Industrial Engineering and Management Innovation (IEMI2012) Proceedings, 1727–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38445-5_182.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhu, Shao Ying, and Gerald Schaefer. "Thermal Medical Image Retrieval by Moment Invariants." In Biological and Medical Data Analysis, 182–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30547-7_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Liu, Qian, Hongqing Zhu, and Qian Li. "Image Recognition by Affine Tchebichef Moment Invariants." In Artificial Intelligence and Computational Intelligence, 472–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23896-3_58.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Image moment":

1

Shen, Jun, and Wei Shen. "Analysis of moment performance." In International Symposium on Multispectral Image Processing, edited by Ji Zhou, Anil K. Jain, Tianxu Zhang, Yaoting Zhu, Mingyue Ding, and Jianguo Liu. SPIE, 1998. http://dx.doi.org/10.1117/12.323623.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yoon, Sunjae, Dahyun Kim, Ji Woo Hong, Junyeong Kim, Kookhoi Kim, and Chang D. Yoo. "Weakly-Supervised Moment Retrieval Network for Video Corpus Moment Retrieval." In 2021 IEEE International Conference on Image Processing (ICIP). IEEE, 2021. http://dx.doi.org/10.1109/icip42928.2021.9506218.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pandey, Vishal Kumar, Ahsaas Bajaj, Jyotsna Singh, and Harish Parthasarathy. "Image analysis using Bateman moment." In 2016 1st India International Conference on Information Processing (IICIP). IEEE, 2016. http://dx.doi.org/10.1109/iicip.2016.7975396.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Shiraishi, Michio, and Yasushi Yamaguchi. "Image moment-based stroke placement." In ACM SIGGRAPH 99 Conference abstracts and applications. New York, New York, USA: ACM Press, 1999. http://dx.doi.org/10.1145/311625.312145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Alghoniemy, M., and A. H. Tewfik. "Image watermarking by moment invariants." In Proceedings of 7th IEEE International Conference on Image Processing. IEEE, 2000. http://dx.doi.org/10.1109/icip.2000.899229.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nor'aini, A. J., M. H. Ahmad Faris, and N. Haryanti. "Image reconstruction: A comparison between moment and non-moment based techniques." In 2011 IEEE International Conference on Computer Applications and Industrial Electronics (ICCAIE). IEEE, 2011. http://dx.doi.org/10.1109/iccaie.2011.6162161.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Duanmu, Xiaoyin. "Image Retrieval Using Color Moment Invariant." In 2010 Seventh International Conference on Information Technology: New Generations. IEEE, 2010. http://dx.doi.org/10.1109/itng.2010.231.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lang, Wong Siaw, Nur Azman Abu, and Hidayah Rahmalan. "Fast 4x4 Tchebichef Moment Image Compression." In 2009 International Conference of Soft Computing and Pattern Recognition. IEEE, 2009. http://dx.doi.org/10.1109/socpar.2009.66.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kanaga lakshmi, D., A. Abudhahir, A. H. Ragamathunisa Begum, and D. Manimegalai. "Tchebichef moment based image quality measure." In 2014 International Conference on Electronics and Communication Systems (ICECS). IEEE, 2014. http://dx.doi.org/10.1109/ecs.2014.6892724.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ruberto, Cecilia Di, and Andrea Morgera. "Moment-Based Techniques for Image Retrieval." In 2008 19th International Conference on Database and Expert Systems Applications (DEXA). IEEE, 2008. http://dx.doi.org/10.1109/dexa.2008.73.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Image moment":

1

Burke, G. J. Evaluation of the discrete complex-image method for a NEC-like moment-method solution. Office of Scientific and Technical Information (OSTI), January 1996. http://dx.doi.org/10.2172/201799.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Guía de práctica de campo. Monitoreo de rasgos funcionales en los cultivos para la detección de estrés temprano: La conductancia estomática y termografía infrarroja como herramienta de medidas claves. International Potato Center, 2020. http://dx.doi.org/10.4160/9789290605676.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La determinación de momentos idóneos para llevar a cabo el riego en los cultivos es crucial para la optimización del recurso hídrico, además de ser parte fundamental de un sistema de soporte de decisión para el riego. Es importante identificar el momento (el ¿cuándo?) en el cual debemos regar de tal manera que ahorremos agua y no reduzcamos significativamente el rendimiento del cultivo, como se ha reportado en nuestras investigaciones llevadas a cabo en el Centro Internacional de la Papa (CIP). Este manual práctico ha sido escrito para ser usado por estudiantes, docentes e investigadores interesados en la detección de estrés temprano en los cultivos, y pretende brindar un conjunto de herramientas recientemente publicadas y generadas por el CIP con el financiamiento del Programa Nacional de Innovación Agraria (PNIA) y el Programa de Investigación en Raíces, Tubérculos y Bananas del CGIAR (RTB). Nuestros alcances han partido de la medición de la conductancia estomática máxima a luz saturada, considerada como el principal indicador del estado hídrico de las plantas, y su relación con la temperatura del follaje. Dicha temperatura es obtenida por medio de imágenes térmicas que son procesadas utilizando un software de acceso abierto “TIPCIP” (Thermal Image Processor). Esto con la finalidad de calcular el índice de estrés hídrico del cultivo (CWSI), una variable que nos indica el grado de estrés hídrico del cultivo y el momento apropiado del riego. En este manual se resume de manera práctica los procedimientos publicados recientemente en revistas internacionales, con la finalidad de que sean aplicados de manera práctica en otros cultivos propiciando la investigación en el campo de la agricultura de ahorro de agua mediante el uso de herramientas ecofisiológicas.
3

Payment Systems Report - June of 2020. Banco de la República de Colombia, February 2021. http://dx.doi.org/10.32468/rept-sist-pag.eng.2020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
With its annual Payment Systems Report, Banco de la República offers a complete overview of the infrastructure of Colombia’s financial market. Each edition of the report has four objectives: 1) to publicize a consolidated account of how the figures for payment infrastructures have evolved with respect to both financial assets and goods and services; 2) to summarize the issues that are being debated internationally and are of interest to the industry that provides payment clearing and settlement services; 3) to offer the public an explanation of the ideas and concepts behind retail-value payment processes and the trends in retail payments within the circuit of individuals and companies; and 4) to familiarize the public, the industry, and all other financial authorities with the methodological progress that has been achieved through applied research to analyze the stability of payment systems. This edition introduces changes that have been made in the structure of the report, which are intended to make it easier and more enjoyable to read. The initial sections in this edition, which is the eleventh, contain an analysis of the statistics on the evolution and performance of financial market infrastructures. These are understood as multilateral systems wherein the participating entities clear, settle and register payments, securities, derivatives and other financial assets. The large-value payment system (CUD) saw less momentum in 2019 than it did the year before, mainly because of a decline in the amount of secondary market operations for government bonds, both in cash and sell/buy-backs, which was offset by an increase in operations with collective investment funds (CIFs) and Banco de la República’s operations to increase the money supply (repos). Consequently, the Central Securities Depository (DCV) registered less activity, due to fewer negotiations on the secondary market for public debt. This trend was also observed in the private debt market, as evidenced by the decline in the average amounts cleared and settled through the Central Securities Depository of Colombia (Deceval) and in the value of operations with financial derivatives cleared and settled through the Central Counterparty of Colombia (CRCC). Section three offers a comprehensive look at the market for retail-value payments; that is, transactions made by individuals and companies. During 2019, electronic transfers increased, and payments made with debit and credit cards continued to trend upward. In contrast, payments by check continued to decline, although the average daily value was almost four times the value of debit and credit card purchases. The same section contains the results of the fourth survey on how the use of retail-value payment instruments (for usual payments) is perceived. Conducted at the end of 2019, the main purpose of the survey was to identify the availability of these payment instruments, the public’s preferences for them, and their acceptance by merchants. It is worth noting that cash continues to be the instrument most used by the population for usual monthly payments (88.1% with respect to the number of payments and 87.4% in value). However, its use in terms of value has declined, having registered 89.6% in the 2017 survey. In turn, the level of acceptance by merchants of payment instruments other than cash is 14.1% for debit cards, 13.4% for credit cards, 8.2% for electronic transfers of funds and 1.8% for checks. The main reason for the use of cash is the absence of point-of-sale terminals at commercial establishments. Considering that the retail-payment market worldwide is influenced by constant innovation in payment services, by the modernization of clearing and settlement systems, and by the efforts of regulators to redefine the payment industry for the future, these trends are addressed in the fourth section of the report. There is an account of how innovations in technology-based financial payment services have developed, and it shows that while this topic is not new, it has evolved, particularly in terms of origin and vocation. One of the boxes that accompanies the fourth section deals with certain payment aspects of open banking and international experience in that regard, which has given the customers of a financial entity sovereignty over their data, allowing them, under transparent and secure conditions, to authorize a third party, other than their financial entity, to request information on their accounts with financial entities, thus enabling the third party to offer various financial services or initiate payments. Innovation also has sparked interest among international organizations, central banks, and research groups concerning the creation of digital currencies. Accordingly, the last box deals with the recent international debate on issuance of central bank digital currencies. In terms of the methodological progress that has been made, it is important to underscore the work that has been done on the role of central counterparties (CCPs) in mitigating liquidity and counterparty risk. The fifth section of the report offers an explanation of a document in which the work of CCPs in financial markets is analyzed and corroborated through an exercise that was built around the Central Counterparty of Colombia (CRCC) in the Colombian market for non-delivery peso-dollar forward exchange transactions, using the methodology of network topology. The results provide empirical support for the different theoretical models developed to study the effect of CCPs on financial markets. Finally, the results of research using artificial intelligence with information from the large-value payment system are presented. Based on the payments made among financial institutions in the large-value payment system, a methodology is used to compare different payment networks, as well as to determine which ones can be considered abnormal. The methodology shows signs that indicate when a network moves away from its historical trend, so it can be studied and monitored. A methodology similar to the one applied to classify images is used to make this comparison, the idea being to extract the main characteristics of the networks and use them as a parameter for comparison. Juan José Echavarría Governor

До бібліографії