Добірка наукової літератури з теми "Interferometry"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Interferometry".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

За допомогою хмари тегів ви можете побачити ще більше пов’язаних тем досліджень, а відповідні кнопки після кожного розділу сторінки дозволяють переглянути розширені списки книг, статей тощо на обрану тему.

Пов'язані теми наукових робіт:

Статті в журналах з теми "Interferometry":

1
RAY, JIM R. "Radio Interferometry." Reviews of Geophysics 29, S1 (January 1991): 148–56. http://dx.doi.org/10.1002/rog.1991.29.s1.148.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Truax, Bruce E., and Lars A. Selberg. "Programmable interferometry." Optics and Lasers in Engineering 7, no. 4 (January 1986): 195–220. http://dx.doi.org/10.1016/0143-8166(86)90001-1.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Ishiguro, M. "Submillimeter interferometry." Astrophysics and Space Science 160, no. 1-2 (1989): 377–84. http://dx.doi.org/10.1007/bf00642795.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Christou, J. C. "Speckle Interferometry." Highlights of Astronomy 8 (1989): 561–62. http://dx.doi.org/10.1017/s1539299600008340.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Speckle interferometry is a technique which utilizes the full diffraction-limited imaging potential of ground-based telescopes. Short exposure images, or specklegrams, with an exposure time less than that of the atmospheric correlation time (~5- 50 ms) preserve the high-spatial frequency information lost in long exposure imaging. In 1970, Labeyrie computed the power spectrum of a set of specklegrams and showed that they contained diffraction-limited information. Since then the field has grown with improvements in both instrumentation and the phase recovery algorithms necessary for imaging. It has been applied at both visible and near-infrared wavelengths although, until recently, the latter has used slit-scanning techniques with single pixel detectors because of the lack of array detectors. The current state of speckle interferometry has been well covered in the proceedings of two recent joint National Optical Astronomy Observatories – European Southern Observatory workshops on Interferometric Imaging in Astronomy (Oracle, 1987 & Garching, 1988).
5
Badurek, G., and H. Rauch. "Neutron interferometry." Physica B: Condensed Matter 276-278 (March 2000): 964–67. http://dx.doi.org/10.1016/s0921-4526(99)01686-5.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Graydon, Oliver. "Plasmonic interferometry." Nature Photonics 6, no. 3 (February 2012): 139. http://dx.doi.org/10.1038/nphoton.2012.45.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Baudon, J., R. Mathevet, and J. Robert. "Atomic interferometry." Journal of Physics B: Atomic, Molecular and Optical Physics 32, no. 15 (August 1999): R173—R195. http://dx.doi.org/10.1088/0953-4075/32/15/201.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Miffre, A., M. Jacquey, M. Büchner, G. Trénec, and J. Vigué. "Atom interferometry." Physica Scripta 74, no. 2 (July 2006): C15—C23. http://dx.doi.org/10.1088/0031-8949/74/2/n01.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Rauch, H. "Neutron Interferometry." Science 262, no. 5138 (November 1993): 1384–85. http://dx.doi.org/10.1126/science.262.5138.1384.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Quirrenbach, Andreas. "Optical Interferometry." Annual Review of Astronomy and Astrophysics 39, no. 1 (September 2001): 353–401. http://dx.doi.org/10.1146/annurev.astro.39.1.353.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Interferometry":

1
Featonby, Paul. "Atom interferometry." Electronic Thesis or Dissertation, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390459.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Lewitton, Neil. "Multiple transducer synthetic aperture sonar interferometry for emulating SAR interferometry." Master Thesis, University of Cape Town, 2007. http://hdl.handle.net/11427/5184.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Includes bibliographical references (p. 77-78 ).
Multiple transducer single-pass synthetic aperture sonar interferometry in air is a technique that can emulate topographic mapping techniques that have not been implemented using radar or that are relatively expensive and difficult to obtain in practice for the radar engineer who wishes to test algorithms using suitable data. This dissertation describes the implementation of a 40 kHz synthetic aperture sonar for acquiring radar-like data. Investigations into beamformed synthetic aperture sonar images as well as multiple-baseline sonar interferons resulting from imaging a variety of scenes are presented in this thesis.
3
Brown, William O. J. "MF radar interferometry." Electronic thesis or dissertation, University of Canterbury. Physics and Astronomy, 1992. http://hdl.handle.net/10092/8142.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis describes the development, operation and observations of interferometry experiments on two medium frequency spaced antennae radar operated by the Department of Physics and Astronomy of the University of Canterbury; the 2.4 MHz radar at Birdlings Flat near Christchurch, New Zealand, and the 2.9 MHz radar at Scott Base on Ross Island in the Antarctic. These radars are of a standard design and detect scattering from the D and lower E regions of the ionosphere in the mesosphere and lower thermosphere. The interferometry techniques used were those of temporal, spatial and frequency domain interferometry which provide information on Doppler shifting and the directional and radial distribution of backscattered signals received by the radars. This project represents the first time that these techniques have been operated together on radars of the type used in this project. The techniques were also carried out in conjunction with the standard procedures used on these radars, that of Spaced Antennae Drifts with Full Correlation Analysis (FCA). Various forms of interferometric analyses were carried out and comparisons were made between the results of interferometric analyses and those of more conventional techniques. For example a study was made of the relationship between interferometric and FCA velocities in which it was found that there was good agreement between the two methods, particularly when the scattering region does not change rapidly as it moves. Other analysis techniques investigated included examination of the angular distribution of scattering and aspect sensitivity, the statistical distributions of scattered signals, post beam steering, vertical velocities and momentum fluxes. Frequency domain interferometry provided enhanced measurement of range and the scattering depth or distribution of range of scattered signals. Measurements of scattering depth clearly identified examples of thin layers or localized scatter. These localized scattering events appeared to be associated with either steady flow or long period variations in steady flow, for example with the semidiurnal solar tide. Aside from these events much of the scatter was observed to be anisotropic and also appeared to originate from a number of distributed scattering centres spread horizontally and vertically in a manner consistent with Fresnel scattering models.
4
Halliday, David Fraser. "Surface wave interferometry." Electronic Thesis or Dissertation, University of Edinburgh, 2009. http://hdl.handle.net/1842/3976.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis concerns the application of seismic interferometry to surface waves. Seismic interferometry is the process by which the wavefield between two recording locations is estimated, resulting in new recordings at one location as if a source had been placed at the other. Thus, in surface-wave interferometry, surface waves propagating between two receiver locations are estimated as if one receiver had recorded the response due to a source of surface-wave energy at the other receiver. In global and engineering seismology new surface-wave responses can allow for imaging of the subsurface, and in exploration seismology it has been proposed that these new surface-wave responses can allow for the prediction and removal of socalled ground-roll (surface waves that are treated as noise). This thesis presents a detailed analysis of surface-wave interferometry: using a combination of modelling studies, real-data studies, and theoretical analyses the processes involved in the application of interferometry to complex (both multi-mode and scattered) surface waves are revealed. These analyses identify why surface waves are often dominant in the application of interferometry, where errors may be introduced in the application of surface-wave interferometry, and how interferometry may be processed in such a way as to minimise those (and other) errors. This allows for the proposal of new data-processing strategies in the application of seismic interferometry to surface waves, potentially resulting in improved surface-wave estimates. Much of the work in this thesis focuses on the use of seismic interferometry to predict and subtract surface waves in land-seismic exploration surveys. Using insights from the presented analyses it is shown that seismic surface waves can be successfully predicted and removed from land-seismic data using an interferometric approach. However, the work in this thesis is not only limited to applications in exploration seismology. In addition to the ground-roll removal method, improved estimates of higher-mode and scattered surfaces waves may allow for more advanced imaging algorithms to be used in conjunction with seismic interferometry. Also, as a consequence of the analysis presented a Generalized Optical Theorem for Surface Waves is derived. This highlights a link between seismic interferometry and the optical theorem and may allow for further application of optical theorems in seismology.
5
Holloway, Alan James. "High-sensitivity interferometry." Electronic Thesis or Dissertation, Loughborough University, 1991. https://dspace.lboro.ac.uk/2134/32721.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
High-sensitivity interferometric techniques are considered for non-destructive testing applications. The methods enable quantitative measurement of optical path variations, resulting from dynamic changes within the test object.
6
Stock, Michael. "Broadband interferometry of lightning." Thesis, New Mexico Institute of Mining and Technology, 2003. http://pqdtopen.proquest.com/#viewpdf?dispub=3684400.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

A lightning interferometer is an instrument which determines the direction to a lightning-produced radio point source by correlating the signal received at two or more antennas. Such instruments have been used with great success for several decades in the study of the physical processes present in a lightning flash. However, previous instruments have either been sensitive to only a narrow radio bandwidth so that the correlation can be done using analog hardware, or have been sensitive to a wide bandwidth but only recorded a short duration of the radiation produced by a lightning flash.

In this dissertation, a broad bandwidth interferometer is developed which is capable of recording the VHF radio emission over the entire duration of a lightning flash. In order to best utilize the additional data, the standard processing techniques have been redeveloped from scratch using a digital cross correlation algorithm. This algorithm can and does locate sources as faint as the noise level of the antennas, typically producing 100,000 or more point source locations over the course of a lightning flash.

At very low received power levels, the likelihood that a signal received at the antenna will be affected by the environmental noise is substantially higher. For this reason, the processing allows for the integration windows of the cross correlation to be heavily overlapped. In this way, the location of each event can be based on a distribution of windows. Further, noise identification techniques which leverage the heavily overlapped windows have been developed based on: the closure delay, the standard deviation, the correlation amplitude, and the number of contributing windows. The filtration techniques have proven to be very successful at identifying and removing mis-located sources, while removing the minimum number of low amplitude sources which are well located.

In the past, lightning interferometers have been limited to using only two perpendicular baselines to determine the direction to each point source. Additional techniques are developed in this dissertation for efficiently computing the image of a point source in the sky using an arbitrary number of antennas in an arbitrary configuration. The multiple baseline techniques further improves the sensitivity and accuracy of the locations provided by broadband interferometers.

To demonstrate the usefulness of broadband interferometers, the activity of 6 flashes spanning a diverse selection of lightning flash types are examined in this dissertation. This includes detailed analysis of negative stepped leaders, positive un-stepped leaders, K-changes, and fast positive breakdown. Initial breakdown pulses which are seen at the beginning of the flash are found to be no different than horizontal negative leader steps seen later in the flash. Evidence is found that positive leaders produce VHF radiation, as opposed to all of the radiation in the positive breakdown region being produced by retrograde negative breakdown. The time resolved three-dimensional velocity of 47 K-changes occurring in two flashes is measured. And finally, fast positive breakdown is characterized and found to be produced by a positive streamer process instead of a leader process.

Observations made with the instrument showcase the capabilities of a continuous sampling broadband interferometer. The instrument makes possible measurements which were difficult or impossible to obtain in the past, and the preliminary observations allude to many exciting scientific findings to come.

7
Huang, Jen-Rong. "Optoelectronic speckle shearing interferometry." Electronic Thesis or Dissertation, Cranfield University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.309680.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Atcha, Hashim. "Optoelectronic speckle pattern interferometry." Electronic Thesis or Dissertation, Cranfield University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282405.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Neutze, Richard. "Acceleration and optical interferometry." Electronic thesis or dissertation, University of Canterbury. Physics, 1995. http://hdl.handle.net/10092/6569.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The influence of acceleration on a number of physical systems is examined. We present a full relativistic treatment of a simple harmonic oscillator with relativistic velocities. The line element for Schwarzschild geometry is expanded in a set of Cartesian coordinates and is shown to be locally equivalent (neglecting curvature) to the line element of a linearly accelerating frame of reference. We consider the rate of a linearly accelerating quantum mechanical clock and the measurement of frequency by non-inertial observers, requiring this measurement to be of finite duration. These analyses demonstrate the standard measurement hypothesis for accelerating observers only approximates the physical behaviour of these systems. We derive the output of an optical ring interferometer in a variety of experimental contexts. A full relativistic reanalysis of the modified Laub drag experiment of Sanders and Ezekiel is performed, correcting a number of errors in their work and giving an overall discrepancy between experiment and theory of 1300 ppm. We examine the behaviour of a ring interferometer containing an accelerating glass sample. Our analysis predicts sideband structure will arise when a glass sample is oscillated along one arm of a Mach-Zehnder interferometer and the resulting output Fourier analysed. We also predict a resonant cavity containing a linearly accelerating glass sample will display optical ringing. A rigorous analysis of a ring interferometer with angular acceleration is presented. This predicts a resonant cavity with angular acceleration will also display optical ringing and demonstrates the beat frequency in a ring laser with angular acceleration is the instantaneous Sagnac beat frequency. Finally, we analyse the optical output of a rotating ring laser with one mirror oscillating, predicting sideband structure in spectra obtained from Fourier analysis of the beat between the opposite beams, and the beat between adjacent modes when the laser has multimode operation.
10
Harasaki, Akiko. "Improved vertical scanning interferometry." Dissertation-Reproduction (electronic), The University of Arizona, 2000. http://hdl.handle.net/10150/289148.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Vertical scanning interferometers are routinely used for the measurement of optical fiber connectors. There are increasing needs for measurements of such items as machined surfaces, contact lenses, paint texture, cell structure, and integrated circuit devices, to name a few. These structures have too much depth, or are too rough, to measure with standard interferometry methods. Phase-measurement interferometry methods are limited to surfaces that do not have any discontinuities larger than one quarter of the operating wavelength. On the other hand, vertical scanning interferometers can be very effective, even though they have low height resolution compared to that of phase-measurement interferometers. Improving the height resolution of vertical scanning interferometers from the point of hardware improvement and signal processing has been one of the major research interests in the surface metrology area. This work provides a new algorithm, which called here "PSI on the Fly" technique, as a solution for improving height resolution of vertical scanning interferometers. This dissertation begins with a review of white-light interference microscopes. The height and lateral resolutions are derived based on scalar diffraction theory. Next, various well-established. algorithms for finding a topographic map of the small object surface are discussed. The work proceeds with a discussion of the phase change upon reflection and its influence on the coherence envelope. Then phase measurement interferometry methods are reviewed. The emphasis is in errors in phase measurement resulting from using a white light source instead of a monochromatic light source as in the usual case. The following chapter describes and examines an often-observed artifact of vertical-scanning interferometry when applied to step heights. The artifact is called "bat wings" because of its appearance. The physical cause of the "bat wings" artifact is discussed through a diffraction model. The next chapter proposes an improved vertical-scanning interferometry algorithm. The method, called here "PSI on the Fly" technique, has been developed by combining regular vertical-scanning interferometry and a monochromatic phase-shifting interferometry technique. The PSI on the Fly technique improves the surface height resolution of vertical scanning interferometry to that of a phase-shifting interferometry measurement. In addition to the resolution improvement, the algorithm also successfully removes the "bat wings" artifact.

Книги з теми "Interferometry":

1
Steel, W. H. Interferometry. 2nd ed. Cambridge [Cambridgeshire]: Cambridge University Press, 1986.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Tokovinin, A. A. Zvezdnye interferometry. Moskva: "Nauka," Glav. red. fiziko-matematicheskoĭ lit-ry, 1988.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Schuster, Gerard Thomas. Seismic interferometry. Cambridge: Cambridge University Press, 2009.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Hariharan, P. Optical interferometry. Sydney: Academic Press, 1985.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Hariharan, P. Optical interferometry. 2nd ed. Amsterdam: Academic Press, 2003.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Hanssen, Ramon F. Radar Interferometry. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/0-306-47633-9.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Rastogi, Pramod K., ed. Holographic Interferometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-540-48078-5.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Hariharan, P. Basics of interferometry. 2nd ed. Amsterdam: Elsevier Academic Press, 2007.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Koronkevich, V. P. Sovremennye lazernye interferometry. Novosibirsk: Izd-vo "Nauka," Sibirskoe otd-nie, 1985.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Hariharan, P. Basics of interferometry. 2nd ed. Amsterdam: Elsevier Academic Press, 2007.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Interferometry":

1
Gross, Herbert, Bernd Dörband, and Henriette Müller. "Interferometry." In Handbook of Optical Systems, 1–180. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527699230.ch1.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Totzeck, Michael. "Interferometry." In Springer Handbook of Lasers and Optics, 1255–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-19409-2_16.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Mertz, Lawrence. "Interferometry." In Excursions in Astronomical Optics, 47–77. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-2386-3_3.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Evans, Christopher J. "Interferometry." In CIRP Encyclopedia of Production Engineering, 710–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-20617-7_16700.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Iizuka, Keigo. "Interferometry." In Engineering Optics, 651–82. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-69251-7_21.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Kervella, Pierre. "Interferometry." In Encyclopedia of Astrobiology, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_792-5.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Evans, Christopher J. "Interferometry." In CIRP Encyclopedia of Production Engineering, 966–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-53120-4_16700.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Kervella, Pierre. "Interferometry." In Encyclopedia of Astrobiology, 816–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_792.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Evans, Christopher J. "Interferometry." In CIRP Encyclopedia of Production Engineering, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-35950-7_16700-3.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Nolte, David D. "Interferometry." In Optical Interferometry for Biology and Medicine, 3–48. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0890-1_1.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Interferometry":

1
Bagherzadeh, M., A. F. Fercher, M. Pircher, W. Drexler, and C. K. Hitzenberger. "Refractometric low coherence interferometry: dispersion interferometry." In European Conference on Biomedical Optics 2005, edited by Wolfgang Drexler. SPIE, 2005. http://dx.doi.org/10.1117/12.632971.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Mueller, Guido. "LISA interferometry." In SPIE Astronomical Telescopes + Instrumentation, edited by John D. Monnier, Markus Schöller, and William C. Danchi. SPIE, 2006. http://dx.doi.org/10.1117/12.670353.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Hensley, Scott. "Radar interferometry." In 2008 IEEE Radar Conference (RADAR). IEEE, 2008. http://dx.doi.org/10.1109/radar.2008.4721147.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Matsuda, Kiyofumi. "Shearing interferometry." In Selected Papers from the International Conference on Optics and Optoelectronics, edited by Kehar Singh, Om P. Nijhawan, Arun K. Gupta, and A. K. Musla. SPIE, 1999. http://dx.doi.org/10.1117/12.346805.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Johnston, Roger G. "Zeeman Interferometry." In 33rd Annual Techincal Symposium, edited by Ryszard J. Pryputniewicz. SPIE, 1990. http://dx.doi.org/10.1117/12.962760.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Levin, G. G., and G. N. Vishnyakov. "Tomographic Interferometry." In 16th International Congress on High Speed Photography and Photonics, edited by Michel L. Andre and Manfred Hugenschmidt. SPIE, 1985. http://dx.doi.org/10.1117/12.967909.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Grechka, Vladimir, and Yang Zhao. "Microseismic interferometry." In SEG Technical Program Expanded Abstracts 2013. Society of Exploration Geophysicists, 2013. http://dx.doi.org/10.1190/segam2013-0017.1.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Brock, Neal, John Hayes, Brad Kimbrough, James Millerd, Michael North-Morris, Matt Novak, and James C. Wyant. "Dynamic interferometry." In Optics & Photonics 2005, edited by Jose M. Sasian, R. John Koshel, and Richard C. Juergens. SPIE, 2005. http://dx.doi.org/10.1117/12.621245.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Cordes, J. M., and A. Wolszczan. "Interstellar interferometry." In AIP Conference Proceedings Volume 174. AIP, 1988. http://dx.doi.org/10.1063/1.37595.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Pritchard, David E., Christopher R. Ekstrom, Jörg Schmiedmayer, Michael S. Chapman, and Troy D. Hammond. "Atom interferometry." In The XIth International conference on laser spectroscopy. AIP, 1993. http://dx.doi.org/10.1063/1.45079.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Interferometry":

1
Pritchard, David E. Atom Interferometry. Fort Belvoir, VA: Defense Technical Information Center, December 2001. http://dx.doi.org/10.21236/ada397658.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Fitch, J. P. Single antenna interferometry. Office of Scientific and Technical Information (OSTI), December 1989. http://dx.doi.org/10.2172/7247425.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Goldberg, Kenneth A. Extreme ultraviolet interferometry. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/658173.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Erskine, D. Techniques in Broadband Interferometry. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/15009760.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Tringe, J. W., M. C. Converse, and R. J. Kane. Develop Prototype Microwave Interferometry Diagnostic. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1335776.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Friedman. Adaptive Optics, LLLFT Interferometry, Astronomy. Fort Belvoir, VA: Defense Technical Information Center, March 2002. http://dx.doi.org/10.21236/ada415904.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Townes, Charles H. Support of Infrared Spatial Interferometry. Fort Belvoir, VA: Defense Technical Information Center, May 1996. http://dx.doi.org/10.21236/ada310085.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Pritchard, David E. New Developments in Atom Interferometry. Fort Belvoir, VA: Defense Technical Information Center, July 1992. http://dx.doi.org/10.21236/ada254094.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Dainty, J. C. High Annular Resolution Stellar Interferometry. Fort Belvoir, VA: Defense Technical Information Center, July 1985. http://dx.doi.org/10.21236/ada168755.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
McAlister, Harold A. Astronomical Observations by Speckle Interferometry. Fort Belvoir, VA: Defense Technical Information Center, June 1986. http://dx.doi.org/10.21236/ada170069.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії

Будь ласка, вимкніть ваш блокувальник реклами

Adblock logo Adblock logo Adblock logo

"Grafiati" – це незалежний сервіс, що забезпечує унікальну якість оформлення бібліографічних посилань. Ви можете користуватися нашим сайтом безоплатно, дозволивши показ реклами, або оформити передплату.

Передплатити