Статті в журналах з теми "Laser desorption/ laser ionization"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Laser desorption/ laser ionization.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Laser desorption/ laser ionization".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Hanley, Luke, Raveendra Wickramasinghe, and Yeni P. Yung. "Laser Desorption Combined with Laser Postionization for Mass Spectrometry." Annual Review of Analytical Chemistry 12, no. 1 (June 12, 2019): 225–45. http://dx.doi.org/10.1146/annurev-anchem-061318-115447.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Lasers with pulse lengths from nanoseconds to femtoseconds and wavelengths from the mid-infrared to extreme ultraviolet (UV) have been used for desorption or ablation in mass spectrometry. Such laser sampling can often benefit from the addition of a second laser for postionization of neutrals. The advantages offered by laser postionization include the ability to forego matrix application, high lateral resolution, decoupling of ionization from desorption, improved analysis of electrically insulating samples, and potential for high sensitivity and depth profiling while minimizing differential detection. A description of postionization by vacuum UV radiation is followed by a consideration of multiphoton, short pulse, and other postionization strategies. The impacts of laser pulse length and wavelength are considered for laser desorption or laser ablation at low pressures. Atomic and molecular analysis via direct laser desorption/ionization using near-infrared ultrashort pulses is described. Finally, the postionization of clusters, the role of gaseous collisions, sampling at ambient pressure, atmospheric pressure photoionization, and the addition of UV postionization to MALDI are considered.
2

Merrigan, Tony L., C. Adam Hunniford, David J. Timson, Martin Catney, and Robert W. McCullough. "Development of a novel mass spectrometric technique for studying DNA damage." Biochemical Society Transactions 37, no. 4 (July 22, 2009): 905–9. http://dx.doi.org/10.1042/bst0370905.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
An experimental system, based upon UV and IR laser desorption, has been constructed to enable the production and characterization of neutral biomolecular targets. These targets are to be used for interaction experiments investigating radiation-induced damage to DNA. The viability of the laser-desorption techniques of MALDI (matrix-assisted laser-desorption ionization), SALDI (surface-assisted laser-desorption ionization) and DIOS (desorption/ionization on silicon), for production of these gas targets is discussed in the present paper. Fluorescent dye tagging and LIF (laser-induced fluorescence) imaging has been used to characterize the biomolecular plumes, revealing their spatial density profiles and temporal evolution.
3

Grotemeyer, J., and E. W. Schlag. "Laser-desorption/laser-ionization mass spectrometry of biomolecules1." Biological Mass Spectrometry 16, no. 1-12 (October 1988): 143–49. http://dx.doi.org/10.1002/bms.1200160125.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Weidner, Steffen, Gerhard Kühn, and Jörg Friedrich. "Infrared-matrix-assisted laser desorption/ionization and infrared-laser desorption/ionization investigations of synthetic polymers." Rapid Communications in Mass Spectrometry 12, no. 19 (October 15, 1998): 1373–81. http://dx.doi.org/10.1002/(sici)1097-0231(19981015)12:19<1373::aid-rcm325>3.0.co;2-n.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lu, I.-Chung, Chuping Lee, Yuan-Tseh Lee, and Chi-Kung Ni. "Ionization Mechanism of Matrix-Assisted Laser Desorption/Ionization." Annual Review of Analytical Chemistry 8, no. 1 (July 22, 2015): 21–39. http://dx.doi.org/10.1146/annurev-anchem-071114-040315.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sholokhova, Anastasiya Yu, Svetlana A. Borovikova, Sergey A. Prikhod'ko, and Alexey K. Buryak. "Ionization of ionic liquids under laser desorption/ionization." Сорбционные и хроматографические процессы 20, no. 5 (November 25, 2020): 565–71. http://dx.doi.org/10.17308/sorpchrom.2020.20/3048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Despite various studies of ILs as MALDI matrices, however, so far no relationship has been foundbetween the composition of ILs and their ability to serve as «good» matrices. For a preliminary experiment,in order to evaluate the characteristics of ILs before being used as a matrix in MALDI-MS, it is necessary tostudy the mass spectral behavior for the matrices themselves under LDI conditions. Therefore, the purpose of this work was to analyse ion liquids based on the cation imidazolium in combination with different types ofanions by the LDI method. Ionic liquids were synthesized in the Laboratory of catalytic processes for thesynthesis of organoelement compounds of G.K. Boreskov Institute of catalysis SB RAS (Novosibirsk). Itshould be noted that this ionic liquid was first synthesized in this Laboratory. Analyses were performed usinga Bruker UltraFlex II time of-flight mass spectrometer. Eleven ion liquids based on substituted cation imidazolium in combination with different types of anions were analysed by method laser desorption/ionization in the paper. In all mass spectra of ionic liquids obtained in the positive ion mode, cation produced a major peak and its fragmented ions. Homologous series characterized by the loss of the methyl group have been recorded. According to the more stable carbon-carbon or nitrogen bond in the heterocyclic system than in the carbon-carbon bond in the aliphatic, ion peaks are observed in the mass spectra, characteristic of the loss of methyl fragments from the aliphatic chain. In the LDI spectra obtained in the negative ion mode, the signals of the anions of ionic liquids and their fragments were observed. The combined use of the spectra obtained in positive and negative mode makes it possible to increase the reliability of identification. This makes it possible to use the revealed patterns of fragmentation for the structural analysis of ionic liquids. The analyzed ILs can be used as MALDI matrices, because they do not form dimers, assassinates, are characterized by the absence of adducts with metal ions, which is important for their further use as matrices. BMIMC6F5BF3 was first described by the LDI-MS method. It was shown that the observed fragmentation of the molecular ion of this IL is typical for most ILs with similar cations.
7

Gruszecka, A., M. Szymańska-Chargot, A. Smolira, and L. Michalak. "Laser desorption/ionization of carbon clusters." Vacuum 82, no. 10 (June 2008): 1083–87. http://dx.doi.org/10.1016/j.vacuum.2008.01.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bhattacharya, Sucharita H., Timothy J. Raiford, and Kermit K. Murray. "Infrared Laser Desorption/Ionization on Silicon." Analytical Chemistry 74, no. 9 (May 2002): 2228–31. http://dx.doi.org/10.1021/ac0112972.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Polunina, I. A., K. E. Polunin, and A. K. Buryak. "Laser Desorption and Ionization of Thiosemicarbazides." Colloid Journal 82, no. 6 (November 2020): 696–704. http://dx.doi.org/10.1134/s1061933x20060095.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Weeding, T. L., R. J. J. M. Steenvoorden, P. G. Kistemaker, and J. J. Boon. "Laser desorption multiphoton ionization mass spectrometry." Journal of Analytical and Applied Pyrolysis 20 (July 1991): 47–56. http://dx.doi.org/10.1016/0165-2370(91)80061-c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Ryan, Daniel J., and Kuangnan Qian. "Laser-Based Ionization: A Review on the Use of Matrix-Assisted Laser Desorption/Ionization and Laser Desorption/Ionization Mass Spectrometry in Petroleum Research." Energy & Fuels 34, no. 10 (August 28, 2020): 11887–96. http://dx.doi.org/10.1021/acs.energyfuels.0c02374.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

SPEIR, J. P., G. S. GORMAN, and I. J. AMSTER. "ChemInform Abstract: Laser Desorption, Chemical Ionization, and Laser Desorption/Chemical Ionization Applications with Fourier Transform Mass Spectrometry." ChemInform 23, no. 52 (August 21, 2010): no. http://dx.doi.org/10.1002/chin.199252338.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Liang, Sheng-Ping, I.-Chung Lu, Shang-Ting Tsai, Jien-Lian Chen, Yuan Tseh Lee, and Chi-Kung Ni. "Laser Pulse Width Dependence and Ionization Mechanism of Matrix-Assisted Laser Desorption/Ionization." Journal of The American Society for Mass Spectrometry 28, no. 10 (July 13, 2017): 2235–45. http://dx.doi.org/10.1007/s13361-017-1734-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Little, Mark W., Jae-Kuk Kim, and Kermit K. Murray. "Two-laser infrared and ultraviolet matrix-assisted laser desorption/ionization." Journal of Mass Spectrometry 38, no. 7 (2003): 772–77. http://dx.doi.org/10.1002/jms.494.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Hiraoka, Kenzo. "Laser spray: electric field-assisted matrix-assisted laser desorption/ionization." Journal of Mass Spectrometry 39, no. 4 (April 2004): 341–50. http://dx.doi.org/10.1002/jms.621.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Riahi, Karim, Gérard Bolbach, Alain Brunot, Francis Breton, Marenglen Spiro, and Jean-Claude Blais. "Influence of laser focusing in matrix-assisted laser desorption/ionization." Rapid Communications in Mass Spectrometry 8, no. 3 (March 1994): 242–47. http://dx.doi.org/10.1002/rcm.1290080304.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Huang, Fan, Xing Fan, and Kermit K. Murray. "Matrix-assisted laser desorption ionization of infrared laser ablated particles." International Journal of Mass Spectrometry 274, no. 1-3 (July 2008): 21–24. http://dx.doi.org/10.1016/j.ijms.2008.04.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Poveda, Juan C., Alfonso Guerrero, Ignacio Álvarez, and Carmen Cisneros. "Two step laser desorption – laser ionization of PAHs. Experimental Setup." Journal of Physics: Conference Series 388, no. 14 (November 5, 2012): 142017. http://dx.doi.org/10.1088/1742-6596/388/14/142017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

TASKER, A. D., L. ROBSON, S. M. HANKIN, K. W. D. LEDINGHAM, R. P. SINGHAL, X. FANG, T. MCCANNY, et al. "Ultrafast laser analysis of nitro-PAHs using laser desorption/femtosecond ionization mass spectrometry." Laser and Particle Beams 19, no. 2 (April 2001): 205–8. http://dx.doi.org/10.1017/s0263034601192062.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Analytical interest in nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) is related to their high mutagenicity and potential presence in a variety of environmental media such as diesel exhaust and urban air particulate matter. Furthermore, fundamental interest in these molecular systems stems from the photophysics of the labile NO2 functional group, which has been investigated using mass spectrometry. The nitro-PAHs, 1-nitronaphthalene, 9-nitroanthracene, and 1-nitropyrene, have been studied using both femtosecond (λ = 395 and 790 nm) and nanosecond (λ = 266 nm) lasers coupled to a reflectron time of flight mass spectrometer. Analysis of mass spectra taken over a range of intensities (1014–1015 W/cm2) has demonstrated that structurally specific ions can be observed for each molecule, with little or no fragmentation at lower intensities. It has also been found that an intact parent ion can be detected using femtosecond ionization at 395 nm in each case. This work demonstrates the potential use of laser desorption/femtosecond laser mass spectrometry (LD/FLMS) as an analytical technique for the detection of nitro-PAHs and other environmental pollutants and as a means of studying the photodynamics of labile molecular systems.
20

Nagoshi, Keishiro, Kazuhiro Sakata, Kohei Shibamoto, and Takashi Korenaga. "Ionization Mechanism in Surface Plasmon Enhanced Laser Desorption/Ionization." e-Journal of Surface Science and Nanotechnology 7 (2009): 93–96. http://dx.doi.org/10.1380/ejssnt.2009.93.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Liu, Bo-Hong, Oleg P. Charkin, Nina Klemenko, Chiu Wen Chen, and Yi-Sheng Wang. "Initial Ionization Reaction in Matrix-Assisted Laser Desorption/Ionization." Journal of Physical Chemistry B 114, no. 33 (August 26, 2010): 10853–59. http://dx.doi.org/10.1021/jp104178m.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Karas, Michael. "Laser Microprobe Mass Spectrometry for Spatially Resolved Organic Analysis." Proceedings, annual meeting, Electron Microscopy Society of America 48, no. 2 (August 12, 1990): 306–7. http://dx.doi.org/10.1017/s0424820100135137.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Within the last twenty years, lasers were used for sample ionization in mass spectrometry by coupling nearly any available type of laser to the different kinds of available mass analyzers. There is a broad area of applications of the so-called laser ionization/desorption mass spectrometry (LIMS, LDMS) in a large variety of fields, such as geology, mineralogy, material research, general chemistry and biochemistry ranging from determination of bulk elemental composition to molecular weight determination of biological macromolecules. By combining an UV-microscope with a short-pulse UV-laser (for sample observation and focused irradiation of selected sample areas within μm-resolution) and a time-of-flight mass spectrometer, the technique of laser microprobe mass spectrometry was established (LAMMA-, LIMAtechnique). Also laser microprobe mass spectrometry was applied in very different fields. Most of the work dealt with the determination of element distributions within biological samples, usually prepared as thin sections and examined with a transmission geometry, i.e. by perforating the compartment of sample to be analyzed with a high intensity laser beam.
23

Solouki, Touradj, and David H. Russell. "Structural Mass Spectrometry of Matrix-Assisted Laser-Desorbed Biomolecules by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: Photoionization and Photofragmentation." Applied Spectroscopy 47, no. 2 (February 1993): 211–17. http://dx.doi.org/10.1366/0003702934048271.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Laser desorption ionization of compounds that absorb 337 nm (e.g., vitamin B12 and selected porphyrins) are examined by using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. The experiments are performed by mixing the sample with a host compound that promotes desorption and/or ionization. The relative abundance of photofragment ions can be controlled by simple adjustments of parameters such as the laser power and matrix-to-analyte ratio. In addition, it is shown that gas-phase photoionization/photodissociation of laser-desorbed species by a second laser pulse provides structural information for both negative and positive ions.
24

Knochenmuss, Richard. "Laser Desorption/Ablation Plumes from Capillary-Like Restricted Volumes." European Journal of Mass Spectrometry 15, no. 2 (April 2009): 189–98. http://dx.doi.org/10.1255/ejms.960.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Laser desorption/ionization from structured surfaces has been the object of recently renewed interest. Conditions in the plume of material ablated from such surfaces may differ from those of a sample which is ablated in bulk. Since recombination and secondary ion–molecule reactions in the plume play a major role in determining the types and quantities of ions observed at the detector, these differences are analytically relevant. Desorption/ionization substrates with channels of high aspect ratio are modeled as capillary nozzles, from which free jets are emitted. A previously developed matrix-assisted laser desorption/ionization ablation/ionization model is adapted for these jets. More primary ions reach the detector when ablated from a capillary orifice, but fewer analye ions are created in secondary reactions. These differences in ion yield can persist for arrays of capillaries on the surface, depending on the ratio of their diameter to spacing.
25

Dattelbaum, Andrew M., and Srinivas Iyer. "Surface-assisted laser desorption/ionization mass spectrometry." Expert Review of Proteomics 3, no. 1 (February 2006): 153–61. http://dx.doi.org/10.1586/14789450.3.1.153.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Novikov, Alexey, Martine Caroff, Serge Della-Negra, Yvon Lebeyec, Michèle Pautrat, J. Albert Schultz, Agnès Tempez, Hay-Yan J. Wang, Shelley N. Jackson, and Amina S. Woods. "Matrix-Implanted Laser Desorption/Ionization Mass Spectrometry." Analytical Chemistry 76, no. 24 (December 2004): 7288–93. http://dx.doi.org/10.1021/ac049123i.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Carson, Peter G., Murray V. Johnston, and Anthony S. Wexler. "Laser desorption/ionization of ultrafine aerosol particles." Rapid Communications in Mass Spectrometry 11, no. 9 (June 15, 1997): 993–96. http://dx.doi.org/10.1002/(sici)1097-0231(19970615)11:9<993::aid-rcm950>3.0.co;2-j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Rousell, David J., Sucharita M. Dutta, Mark W. Little, and Kermit K. Murray. "Matrix-free infrared soft laser desorption/ionization." Journal of Mass Spectrometry 39, no. 10 (2004): 1182–89. http://dx.doi.org/10.1002/jms.706.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Michalak, Leszek, Keith J. Fisher, David S. Alderdice, Daniel R. Jardine, and Gary D. Willett. "C60-assisted laser desorption-ionization mass spectrometry." Organic Mass Spectrometry 29, no. 9 (September 1994): 512–15. http://dx.doi.org/10.1002/oms.1210290912.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Chen, L. C., J. Yonehama, T. Ueda, H. Hori, and K. Hiraoka. "Visible-laser desorption/ionization on gold nanostructures." Journal of Mass Spectrometry 42, no. 3 (2007): 346–53. http://dx.doi.org/10.1002/jms.1165.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Karas, Michael, Ute Bahr, and Ulrich Gießmann. "Matrix-assisted laser desorption ionization mass spectrometry." Mass Spectrometry Reviews 10, no. 5 (September 1991): 335–57. http://dx.doi.org/10.1002/mas.1280100503.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Tarka, Mark. "Is laser desorption/ionization TOFMS field-assisted?" Rapid Communications in Mass Spectrometry 13, no. 10 (May 30, 1999): 975. http://dx.doi.org/10.1002/(sici)1097-0231(19990530)13:10<975::aid-rcm582>3.0.co;2-q.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Grechnikov, Alexander A., Alexey S. Borodkov, Yaroslav O. Simanovsky, and Sergey M. Nikiforov. "Silicon surface assisted laser desorption ionization mass spectrometry for quantitative analysis." European Journal of Mass Spectrometry 27, no. 2-4 (April 4, 2021): 84–93. http://dx.doi.org/10.1177/14690667211006017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The approach to quantitative analysis by silicon Surface Assisted Laser Desorption Ionization Mass Spectrometry (Si-SALDI) is proposed. The approach is based on the new method for forming an active surface layer on a silicon substrate by exposing to laser radiation directly in the ion source of a mass spectrometer. The method can be used repeatedly on the same substrate, providing high reproducibility of its surface ionization properties and high ionization efficiency of organic compounds. Within the proposed approach, the methods of improvement of signal reproducibility are also considered, including continuous monitoring of the silicon surface ionization properties using a Knudsen effusion cell; scanning the surface of a silicon substrate with a laser beam; selecting the optimal value of laser fluence and using a reproducible sample introduction technique. It is demonstrated that this approach can be successfully applied to quantify clinically relevant concentrations of pharmaceutical drugs in extracts of blood.
34

Pallix, J. B., C. H. Becker, and N. Newman. "Surface Analysis by Laser Ionization." MRS Bulletin 12, no. 6 (September 1987): 52–59. http://dx.doi.org/10.1557/s0883769400067233.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractAn overview is presented of a recently developed surface analysis method that combines (1) desorption of neutral atoms and molecules from a sample, typically by sputtering, (2) efficient uniform ionization close to but above the surface by an intense ultraviolet laser beam, and (3) time-of-flight mass spectrometry. This technique, surface analysis by laser ionization, or SALI, provides extremely efficient and sensitive quantitative analysis of surfaces and materials with high depth resolution. Essentially any type of material can be analyzed as evidenced by the examples presented here: the Au-GaAs system, a phosphor-silicate glass, and a bulk polymer.
35

Lykke, Keith R., Deborah Holmes Parker, Peter Wurz, Jerry E. Hunt, Michael J. Pellin, Dieter M. Gruen, John C. Hemminger, and Robert P. Lattimer. "Mass spectrometric analysis of rubber vulcanizates by laser desorption/laser ionization." Analytical Chemistry 64, no. 22 (November 15, 1992): 2797–803. http://dx.doi.org/10.1021/ac00046a024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Elsila, Jamie E., Nathalie P. de Leon, and Richard N. Zare. "Factors Affecting Quantitative Analysis in Laser Desorption/Laser Ionization Mass Spectrometry." Analytical Chemistry 76, no. 9 (May 2004): 2430–37. http://dx.doi.org/10.1021/ac0354140.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Zare, Richard N., Jong Hoon Hahn, and Renato Zenobi. "Mass Spectrometry of Molecular Adsorbates Using Laser Desorption/Laser Multiphoton Ionization." Bulletin of the Chemical Society of Japan 61, no. 1 (January 1988): 87–92. http://dx.doi.org/10.1246/bcsj.61.87.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Sadeghi, Mehrnoosh, Zohra Olumee, Xiaodong Tang, Akos Vertes, Zhi-Xing Jang, Angus J. Henderson, Hyo Sang Lee, and Coorg R. Prasad. "Compact Tunable Cr:LiSAF Laser for Infrared Matrix-assisted Laser Desorption/Ionization." Rapid Communications in Mass Spectrometry 11, no. 4 (February 28, 1997): 393–97. http://dx.doi.org/10.1002/(sici)1097-0231(19970228)11:4<393::aid-rcm868>3.0.co;2-s.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Tang, Xiaodong, Mehrnoosh Sadeghi, Zohra Olumee, and Akos Vertes. "Matrix-assisted Laser Desorption/Ionization by Two Collinear Subthreshold Laser Pulses." Rapid Communications in Mass Spectrometry 11, no. 5 (March 1997): 484–88. http://dx.doi.org/10.1002/(sici)1097-0231(199703)11:5<484::aid-rcm895>3.0.co;2-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Chen, Lee Chuin, Daiki Asakawa, Hirokazu Hori, and Kenzo Hiraoka. "Matrix-assisted laser desorption/ionization mass spectrometry using a visible laser." Rapid Communications in Mass Spectrometry 21, no. 24 (2007): 4129–34. http://dx.doi.org/10.1002/rcm.3315.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Little, Mark W., and Kermit K. Murray. "Two-laser mid-infrared and ultraviolet matrix-assisted laser desorption/ionization." International Journal of Mass Spectrometry 261, no. 2-3 (March 2007): 140–45. http://dx.doi.org/10.1016/j.ijms.2006.08.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Prysiazhnyi, Vadym, Filip Dycka, Jiri Kratochvil, Vitezslav Stranak, and Vladimir N. Popok. "Effect of Ag Nanoparticle Size on Ion Formation in Nanoparticle Assisted LDI MS." Applied Nano 1, no. 1 (August 24, 2020): 3–13. http://dx.doi.org/10.3390/applnano1010002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Metal nanoparticles (NPs) were reported as an efficient matrix for detection of small molecules using laser desorption/ionization mass spectrometry. Their pronounced efficiency is mostly in desorption enhancement, while, in some cases, NPs can facilitate charge transfer to a molecule, which has been reported for alkali metals and silver. In this work, we present the study of the influence of Ag NP size on the laser desorption/ionization mass spectra of a model analyte, the molecule of riboflavin. The NPs were produced by magnetron sputtering-based gas aggregation in a vacuum and mass-filtered before the deposition on substrates. It was found that the utilization of smaller Ag NPs (below 15 nm in diameter) considerably enhanced the molecule desorption. In contrast, the laser irradiation of the samples with larger NPs led to the increased ablation of silver, resulting in [analyte + Ag]+ adduct formation.
43

Bakhtiar, Ray, and Randall W. Nelson. "Electrospray ionization and matrix-assisted laser desorption ionization mass spectrometry." Biochemical Pharmacology 59, no. 8 (April 2000): 891–905. http://dx.doi.org/10.1016/s0006-2952(99)00317-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Hurtado, Paola, Ana R. Hortal, Marta Cruz-Guzmán, and Bruno Martínez-Haya. "Fragmentation and Gas Phase Aggregation Processes in the Laser Desorption/Ionization of Chlorodiaminotriazines." European Journal of Mass Spectrometry 13, no. 5 (October 2007): 321–29. http://dx.doi.org/10.1255/ejms.892.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Fragmentation and supramolecular aggregation induced during the laser desorption/ionization (LDI) of four chlorodiaminotriazines (simazine, atrazine, terbutylazine and propazine) have been investigated. The laser wavelength employed (266 nm) lies within the first absorption band of the four triazines. The main fragmentation channel observed involves the prompt cleavage of the Cl atom, followed by partial or total fragmentation of the side alkyl chains. Breakage of the triazinic ring becomes efficient at moderate laser powers; however, the deamination of the triazine is not observed to take place. In addition, the formation of both covalent and non-covalent triazinic aggregates in the desorption plume is found to be particularly efficient. Aggregates as large as heptamers are neatly detected, with the observation that those with the most intense signal involve the dechlorinated triazinic fragment. Both aggregation and fragmentation are largely suppressed upon dilution of the triazine under matrix-assisted laser desorption/ionization conditions.
45

Yang, Jing, Hongjun Zhang, Jia Jia, Xinrong Zhang, Xiaoxiao Ma, Minlin Zhong, and Zheng Ouyang. "Antireflection Surfaces for Biological Analysis Using Laser Desorption Ionization Mass Spectrometry." Research 2018 (October 31, 2018): 1–13. http://dx.doi.org/10.1155/2018/5439729.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Laser desorption ionization mass spectrometry (LDI-MS) is a primary tool for biological analysis. Its success relies on the use of chemical matrices that facilitate soft desorption and ionization of the biomolecules, which, however, also limits its application for metabolomics study due to the chemical interference by the matrix compounds. The requirement for sample pretreatment is also undesirable for direct sampling analysis or tissue imaging. In this study, antireflection (AR) metal surfaces were investigated as sample substrates for matrix-free LDI-MS. They were prepared through ultrafast laser processing, with high light-to-heat energy conversion efficiency. The morphology and micro/nanostructures on the metal surfaces could be adjusted and optimized by tuning the laser fabrication process. The super-high UV absorption at 97% enabled highly efficient thermal desorption and ionization of analytes. The analytical performance for the matrix-free LDI was explored by analyzing a variety of biological compounds, including carbohydrates, drugs, metabolites, and amino acids. Its applicability for direct analysis of complex biological samples was also demonstrated by direct analysis of metabolites in yeast cells.
46

Pomastowski, Pawel, and Boguslaw Buszewski. "Complementarity of Matrix- and Nanostructure-Assisted Laser Desorption/Ionization Approaches." Nanomaterials 9, no. 2 (February 14, 2019): 260. http://dx.doi.org/10.3390/nano9020260.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In recent years, matrix-assisted laser desorption/ionization (MALDI) has become the main tool for the study of biological macromolecules, such as protein nano-machines, especially in the determination of their molecular masses, structure, and post-translational modifications. A key role in the classical process of desorption and ionization of the sample is played by a matrix, usually a low-molecular weight weak organic acid. Unfortunately, the interpretation of mass spectra in the mass range of below m/z 500 is difficult, and hence the analysis of low molecular weight compounds in a matrix-assisted system is an analytical challenge. Replacing the classical matrix with nanomaterials, e.g., silver nanoparticles, allows improvement of the selectivity and sensitivity of spectrometric measurement of biologically important small molecules. Nowadays, the nanostructure-assisted laser desorption/ionization (NALDI) approach complements the classic MALDI in the field of modern bioanalytics. In particular, the aim of this work is to review the recent advances in MALDI and NALDI approaches.
47

Kancharla, Vidhyullatha, Sajid Bashir, Jingbo L. Liu, Oscar M. Ramirez, Peter J. Derrick, and Kyle A. Beran. "Effect of metal surfaces on matrix-assisted laser desorption/ionization analyte peak intensities." European Journal of Mass Spectrometry 23, no. 5 (September 18, 2017): 287–99. http://dx.doi.org/10.1177/1469066717712694.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Different metal surfaces in the form of transmission electron microscope grids were examined as support surfaces in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with a view towards enhancement of peptide signal intensity. The observed enhancement between 5-fold and 20-fold relative to the normal stainless steel slide was investigated by applying the thermal desorption model for matrix-assisted laser desorption/ionization. A simple model evaluates the impact that the thermal properties of the metals have on the ion yield of the analyte. It was observed that there was not a direct, or strong, correlation between the thermal properties of the metals and the corresponding ion yield of the peptides. The effects of both fixed and variable laser irradiances versus ion yield were also examined for the respective metals studied. In all cases the use of transmission electron microscope grids required much lower laser irradiances in order to generate similar peak intensities as those observed with a stainless steel surface.
48

Zechmann, Carsten, Tassilo Muskat, and Jürgen Grotemeyer. "Wavelength- and Time-Resolved Luminescence Spectroscopy for Investigation of the Matrix-Assisted Laser Desorption Process." European Journal of Mass Spectrometry 8, no. 4 (August 2002): 287–93. http://dx.doi.org/10.1255/ejms.490.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This work deals with investigations of fluorescence phenomena during interaction of ultraviolet laser radiation with four substances (2,5-dihydroxybenzoic acid, 3-hydroxypicolinic acid, dithranol and ferulic acid) commonly used as matrices in matrix-assisted laser desorption/ionization (MALDI). Wavelength-resolved fluorescence measurements allowed classification of UV-MALDI matrices on the basis of their Stokes shift. Matrices showing a high Stokes shift dissipated high amounts of laser energy by means of intra- and intermolecular energy transfer processes, hence contributing less to the ionization of analyte compounds. Conversely, matrix substances with a low Stokes shift retained more of the original photonic energy which may then be available for ionization within the matrix or after desorption of molecular species. Therefore matrix compounds can be designated as “hard” (high ionization energy) in the case of small Stokes shifts or “soft” (low ionization energy) in the case of high Stokes shifts. Time-resolved measurements showed fluorescence lifetimes below 5 ns for all four substances.
49

Dreisewerd, Klaus, Martin Schürenberg, Michael Karas, and Franz Hillenkamp. "Matrix-assisted laser desorption/ionization with nitrogen lasers of different pulse widths." International Journal of Mass Spectrometry and Ion Processes 154, no. 3 (July 1996): 171–78. http://dx.doi.org/10.1016/0168-1176(96)04377-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Qiu, Ran, and Hai Luo. "Reaction and detection click in high-voltage assisted laser desorption ionization mass spectrometry." Analyst 139, no. 15 (2014): 3706–8. http://dx.doi.org/10.1039/c3an02190d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Click by Laser@Cu in HALDI-MS: A click reaction (copper-catalyzed azide–alkyne cycloaddition) catalyzed by “naked” copper ions (without ligands) generated in situ from a copper substrate by laser ablation in a high-voltage assisted laser desorption/ionization (HALDI) ion source is demonstrated.

До бібліографії