Добірка наукової літератури з теми "On-Machine metrology"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "On-Machine metrology".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

За допомогою хмари тегів ви можете побачити ще більше пов’язаних тем досліджень, а відповідні кнопки після кожного розділу сторінки дозволяють переглянути розширені списки книг, статей тощо на обрану тему.

Статті в журналах з теми "On-Machine metrology":

1

Bibby, Matthew, and Christopher King. "Development of an On-Machine 3D Texture Analyser." Advanced Materials Research 579 (October 2012): 338–47. http://dx.doi.org/10.4028/www.scientific.net/amr.579.338.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Texture metrology of large optical components causes many practical problems, from handling heavy units in the laboratory, to applying existing bench top devices, unable to access most of the part area. Application of an on-machine device allows these practical issues to be overcome and provides an opportunity for an automated metrology process. We describe our work on a texture interferometer that is mounted onto a Zeeko optical polishing machine for in-process surface texture measurements on large optics.
2

Vallejo, Marcela, Carolina de la Espriella, Juliana Gómez-Santamaría, Andrés Felipe Ramírez-Barrera, and Edilson Delgado-Trejos. "Soft metrology based on machine learning: a review." Measurement Science and Technology 31, no. 3 (December 2019): 032001. http://dx.doi.org/10.1088/1361-6501/ab4b39.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gao, W., H. Haitjema, F. Z. Fang, R. K. Leach, C. F. Cheung, E. Savio, and J. M. Linares. "On-machine and in-process surface metrology for precision manufacturing." CIRP Annals 68, no. 2 (2019): 843–66. http://dx.doi.org/10.1016/j.cirp.2019.05.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Li, Duo, Bo Wang, Zheng Qiao, and Xiangqian Jiang. "Ultraprecision machining of microlens arrays with integrated on-machine surface metrology." Optics Express 27, no. 1 (January 2019): 212. http://dx.doi.org/10.1364/oe.27.000212.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chen, J. S., J. X. Yuan, J. Ni, and S. M. Wu. "Real-time Compensation for Time-variant Volumetric Errors on a Machining Center." Journal of Engineering for Industry 115, no. 4 (November 1993): 472–79. http://dx.doi.org/10.1115/1.2901792.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
An error compensation system has been developed to enhance the time-variant volumetric accuracy of a 3-axis machining center by correcting the existing machine errors through sensing, metrology, and computer control techniques. A general methodology has been developed to synthesize both the geometric and thermal errors of machines into a time-variant volumetric error model. Instead of the well-known 21 geometric error components, 32 machine linkage errors are formulated as a 4D error field including the space domain and the time domain. Different types of models are proposed for different kinds of thermal error components. A compensation controller based on an IBM/PC has been linked with a CNC controller to compensate for machine errors in real time. This scheme has been implemented on a horizontal machining center and has been shown, using metrology instruments, to improve the machine accuracy by an order of magnitude. A cut workpiece inspected using a coordinate measuring machine (CMM) has also shown that dimension errors have been reduced from 92.4 μm to 18.9 μm in a dimension of 404 × 310 mm2 and the depth difference of milled surfaces has been reduced from 196 μm to 8 μm.
6

Blumröder, Ulrike, Ronald Füßl, Thomas Fröhlich, Eberhard Manske, and Rostyslav Mastylo. "FREQUENCY COMB-COUPLED METROLOGY LASERS FOR NANOPOSITIONING AND NANO MEASURING MACHINES." Measuring Equipment and Metrology 82, no. 4 (2021): 36–42. http://dx.doi.org/10.23939/istcmtm2021.04.036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This article shows how a direct readout of the interferometric length measurement in nanopositioning machines can be transferred by connecting the metrology laser to a frequency comb line. The approach is based on a GPS-referenced frequency comb with which the stability of the timer (atomic clock via GPS) is transferred to the metrology laser of the nanopositioning and nano measuring machine NPMM-200. The necessary prerequisites for ensuring traceability are discussed. It is demonstrated that with this approach an improvement in the long-term stability of the metrology laser by three orders of magnitude can be achieved.
7

Lin, Shuo. "Research on the swing and vibration restraint of the 2 MN deadweight machine frame." ACTA IMEKO 9, no. 5 (December 2020): 97. http://dx.doi.org/10.21014/acta_imeko.v9i5.947.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, the new 2 MN deadweight force standard machine of FJIM (Fujian Metrology Institute) with an optimal 20 kN frame with swing and vibration restraint is detailed. Load transient response is considered in the design of column, and a mass damper is used to make the frame stable in 3 s. These methods help the machine reach the uncertainty it claimed.
8

Takahashi, Satoru, Yuki Shimizu, and Yasuhiro Mizutani. "Special Issue on Intelligent Measurement for Advanced Production Engineering." International Journal of Automation Technology 11, no. 5 (August 2017): 681. http://dx.doi.org/10.20965/ijat.2017.p0681.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Measurement technology in the field of production engineering has long played an essential role in improving the yield and reliability of manufactured products, and it will continue to increase in importance to the manufacture of advanced products. The development of intelligent and innovative measurement technologies will not only be essential but also indispensable to the creation of high value-added products as next-generation advanced products, manufactured based on leading-edge production technologies and science. The importance of measurement technologies indispensable to the digitization of things has been increasing particularly dramatically in the industrial revolution of production based on the innovative advancement of big data management and the cloud computing environment. This special issue addresses the latest research advances into measurement for production engineering. This covers a wide area, including dimensional measurement, surface metrology, uncertainty, traceability, calibration, in-process and on-line metrology, machine tool metrology, optical metrology, micro and nano metrology, and applied sensor technology. We hope that learning more about these advances will enable the readers to share in the authors’ experiences and knowledge of technologies and development. All papers were refereed through careful peer reviews. We would like to express our sincere appreciation to the authors for their submissions and to the reviewers for their invaluable efforts, ensuring the success of this special issue.
9

Ni, J., and S. M. Wu. "An On-Line Measurement Technique for Machine Volumetric Error Compensation." Journal of Engineering for Industry 115, no. 1 (February 1993): 85–92. http://dx.doi.org/10.1115/1.2901643.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A hybrid on-line and off-line measurement technique is developed for machine volumetric error compensation based on a multiple-degree-of-freedom laser optical system. When implemented on a 3-axis machine up to 15 geometric error components can be measured simultaneously on-line and the remaining 6 components need to be calibrated off-line. Since the on-line measurement systems use different metrology bases, a modified volumetric error model is derived for a milling machine by considering the measurement features of the multiple-degree-of-freedom system. Through experimental tests, it was found that the discrepancy between the identified errors and the actual errors was less than 4 μm out of a maximum range of 20 μm.
10

Matsubara, Atsushi. "Special Issue on Machine Tool Evaluation." International Journal of Automation Technology 6, no. 2 (March 2012): 109. http://dx.doi.org/10.20965/ijat.2012.p0109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
With machine tools evolving with the hardware and control whose dramatic advances are expanding the field, requirements for performance have grown tougher. These have made it more complicated to design, produce, and maintain machine tool systems. This has also ensured that performance evaluation and prediction technology play an increasingly important and active role in these areas. This special issue on machine tool evaluation should prove especially interesting to researchers and engineers engaged in the enhancement of accuracy, efficiency, and versatility in machine tool systems, including the important disciplines of tooling and cutting tools. The topics that are covered in this special issue include – but are not limited to – the metrology of machine tools, the identification of kinematic errors through machine tool geometry, the evaluation of thermal deformation, the dynamic analysis of machine tools, the evaluation of spindle stiffness, and cutting-edge monitoring technology. All of these provide advanced knowledge concerning that state-of-the-art of technology required to ensure that machine tool design continues to remain innovative. I would like to close here by expressing my sincere appreciation to all those who have worked to make this issue interesting and informative. My special thanks go to the authors of the featured articles and to the reviewers whose invaluable efforts have made this publication possible.

Дисертації з теми "On-Machine metrology":

1

Williamson, James. "Dispersed reference interferometry for on-machine metrology." Electronic Thesis or Diss., University of Huddersfield, 2016. http://eprints.hud.ac.uk/id/eprint/31554/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The reliance of emerging engineering and scientific applications on nanometre scale surfaces has led to the requirement for embedded metrology instrumentation for on-machine measurement in precision and ultra-precision manufacturing processes. In-situ measurement provides reduction in waste, cost and production cycle time of manufactured components however the presence of environmental noise and difficulties of integration make embedded metrology challenging. In this thesis a review of on-machine methods of optical metrology is provided and commercially available instruments are summarised. The requirement for highly miniaturised methods of distance and surface topography measurement for operation within volume limited manufacturing environments is presented and the necessity for smaller, faster probes with increased range, resolution and robustness outlined. The potential for dispersed reference interferometry (DRI) to exceed the capability of existing single-point remote fibre probing instruments is then introduced. DRI as a technique for single-point distance and surface topography measurement is first evaluated in a bulk optics configuration using a short coherence light source and chromatic dispersion within the reference arm. The resulting spectral interferograms have symmetry positions which are directly related to absolute surface position to yield measurement with a 279 nm axial resolution over a 285 μm axial range. Improvement of this resolution results from introduction of template matching, a signal processing technique which correlates a measured interferogram with a set of pre-calculated template interferograms resulting in a relative method of measurement with an axial resolution of 0.6 nm across the 285 μm axial range. Combination of this high resolution, relative measurement method with low resolution but absolute position data is then explored to improve the robustness of DRI to discontinuous and structured surfaces. Determination of high resolution wraparound order using low resolution absolute data is demonstrated over a 30 μm range, with extension to the full range of DRI expected as future improvements increase the measurement rate. Next a DRI topology is introduced which makes use of miniature common-path probes linked by fibre to a remote interrogation interferometer allowing reduction in size of the on-machine metrology apparatus. Modifications to the DRI are described to enable this common-path remote fibre probing, along with changes to the light source, spectrometer and dispersive element which allow extension of the range of DRI to 800 μm while maintaining nanometre axial resolution. Finally, a further work section offers insights into methods to improve miniaturisation of DRI probes as well as providing discussion of methods of hardware and signal processing optimisation to augment the instrument measurement rate.
2

Bibby, M. "The development of automatic on-machine metrology." Electronic Thesis or Diss., University College London (University of London), 2015. http://discovery.ucl.ac.uk/1469718/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The manufacture of large off-axis aspheric optics for the next generation of extremely large telescopes presents a number of unique challenges. For example, the European Southern Observatory (ESO) Extremely Large Telescope (E-ELT) requires the manufacture of one 1.4 m class ultra-precision mirror segment per week in order to satisfy the first-light deadline. One of the factors limiting the pace of manufacture is metrology. Many of the tasks associated with measurement, such as optic positioning, alignment and acquisition are carried out manually. It is also common for the optic to be removed to a laboratory for measurement, which can be time consuming and risk damage. This thesis presents research into the development of new on-machine metrology techniques, which allow measurement to be carried out in the manufacturing environment. This work is supported by a software application developed by the author to allow the design and control of on-machine metrology. This application uses the computer numerical control (CNC) polishing system as part of the positioning and alignment system. The inclusion of CNC has enabled the development of a close-loop control system which facilitates automatic alignment and acquisition of metrology data. The software presented uses a modular architecture, allowing many different types of metrology to be planned and control using a single application. This is demonstrated using two case studies, which allow automatic on-machine sub-aperture stitching metrology using a metrology tower placed over the machine, and automatic on-machine texture measurement. The use of a closed loop software application to control automatic on-machine texture measurement is a novel step. It is also demonstrated that on-machine metrology in the manufacturing environment can produce measurement data of comparable quality to that of the laboratory. Automatic measurements systems such as those presented are likely to play an increasing role in the large and high-volume optical fabrication sectors.
3

Somthong, Thammarat. "3D freeform surface measurement on coordinate measuring machine using photometric stereo method." Electronic Thesis or Diss., Brunel University, 2017. http://bura.brunel.ac.uk/handle/2438/15270.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Surface metrology has been widely used in manufacturing for many years. There has been a wide range of techniques applied for measuring surface topography. A photometric stereo technique is one of the best ways for the analysis of three-dimensional (3D) surface textural patterns. Many published works are concerned the developed approach for recovering the 3D profiles from surface normal. This research not only presents a methodology used to retrieve the profiles of surface roughness standards but also investigates the uncertainty estimation of textural measurement determined by the photometric stereo method. Various input quantities have been studied such as pixel error from recovered 3D surface textural patterns, the power of light source which involved with surface roughness average (Ra) value and the effect of room temperature. The surface roughness standards were utilized as the reference value. In term of increasing accuracy of the reference value, a contact method (stylus instrument) was used to calibrate them. Illumination angles of light source had some influence on the measurement results. A coordinate measuring machine (CMM) was used for holding the light source in order to study the effects of tilt and slant angles. The effect of tilt and slant angles were investigated. The results of these experiments successfully indicated that the angle used in photometric stereo method played an important role to the accuracy level of the roughness measurement results. The surface roughness specimen manufactured by a Computer Numerical Control (CNC) was applied to validate the capability of the photometric stereo system.
4

Chouhad, Hassan. "Towards online metrology for proactive quality control in smart manufacturing." Electronic Thesis or Diss., Paris, HESAM, 2022. http://www.theses.fr/2022HESAE021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans l’industrie de fabrication traditionnelle, la métrologie est un élément essentiel de sanction de la qualité en bout de la chaîne de production. L’innovant dans le concept de la fabrication intelligente conduit à un repositionnement de la métrologie qui devient proactive au cœur même de la production pour fabriquer dès le départ une première pièce conforme. L’objet de cette thèse est donc de proposer une approche méthodologique pour le développement d'un système proactif, augmenté par des modèles d’intelligence artificielle IA, de contrôle en usinage de la conformité d’un produit à un cahier des charges et de caractériser ses défauts. Pour cela, une première étude sur l’aspect de surface a été réalisée en recueillant des images à haute résolution de fils de cuivre revêtus et découpés pouvant présenter des défauts. Les images, prises par un système de vision par ordinateur basé sur l'imagerie confocale chromatique, ont été utilisées pour générer différents modèles d'intelligence artificielle. Ce traitement consiste à faire de la segmentation et de la classification des défauts observés. En comparant la précision et le temps de traitement des modèles d'IA, l'apprentissage par transfert utilisant le modèle de mobile-net a montré de meilleures performances. Afin d'élargir l'étude de l'évaluation de la qualité de surface, des mesures de profil de surface sur machine-outil ont été effectuées à l'aide de capteurs confocaux chromatiques sans contact. Deux approches ont été réalisées : i) le fraisage de l'aluminium sans signature d’usure d’outil de coupe et ii) le fraisage du titane en tenant compte de la signature de l'usure de l'outil de coupe. Dans les deux configurations de coupe, les paramètres d’usinage, les profils de rugosité de surface et les efforts d’enlèvement de matière ont été enregistrés pour construire une base de données pour l'entraînement des modèles de prédiction par apprentissage automatique. Les résultats ont montré que le modèle XGboost a présenté la meilleure performance de prédiction et ce pour les deux scénarios. En considérant le temps de coupe dans le fraisage du titane, le modèle de prévision de séries temporelles ARIMA a été appliqué pour suivre l'évolution de la rugosité en fonction de l'usure de l'outil. L’analyse moyenne mobile autorégressive intégrée a permis de suivre l’évolution de la rugosité en fonction de la signature d’usure
In the traditional manufacturing industry, metrology is an essential element in sanctioning quality at the end of the production line. The innovation brought by concept of smart manufacturing leads to a repositioning of metrology to be proactive at the heart of production by performing the so-called first-time-right manufacturing of parts. The goal of this thesis is therefore to propose a methodological approach for the development of a proactive system, enhanced by AI models, to control the conformity of a product to a specification during machining and to characterize its defects. For this purpose, a first study on the surface aspect was carried out by collecting high-resolution images of coated and cut copper wires that may present defects. The images, taken by a computer vision system based on chromatic confocal imaging, were used to generate different artificial intelligence models. These models can perform segmentation and classification of observed defects. When comparing the accuracy and processing time of the AI models, transfer learning using the mobile-net model showed better performance. To extend the study of surface quality assessment, surface profile measurements on machine tools were performed using non-contact chromatic confocal sensors. Two approaches were performed: i) milling aluminum without tool wear signature, and ii) milling titanium with tool wear signature. In both cutting configurations, machining parameters, surface roughness profiles, and cutting forces were measured to build a dataset for training the prediction models by machine learning. The results showed that the XGboost model presented the best prediction performance and for both scenarios i) and ii). By considering the cutting time in titanium milling, the autoregressive integrated moving average time series prediction model was applied to track the evolution of roughness with tool wear
5

Verma, Mayank. "An investigation into enabling industrial machine tools as traceable measurement systems." Electronic Thesis or Diss., University of Bath, 2016. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.707583.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
On-machine inspection (OMI) via on-machine probing (OMP) is a technology that has the potential to provide a step change in the manufacturing of high precision products. Bringing product inspection closer to the machining process is very attractive proposition for many manufacturers who demand ever better quality, process control and efficiency from their manufacturing systems. However, there is a shortness of understanding, experience, and knowledge with regards to efficiently implementing OMI on industrially-based multi-axis machine tools. Coupled with the risks associated to this disruptive technology, these are major obstacles preventing OMI from being confidently adopted in many high precision manufacturing environments. The research pursued in this thesis investigates the concept of enabling high precision machine tools as measurement devices and focuses upon the question of: “How can traceable on-machine inspection be enabled and sustained in an industrial environment?” As highlighted by the literature and state-of-the-art review, much research and development focuses on the technology surrounding particular aspects of machine tool metrology and measurement whether this is theory, hardware, software, or simulation. Little research has been performed in terms of confirming the viability of industrial OMI and the systematic and holistic application of existing and new technology to enable optimal intervention. This EngD research has contributed towards the use of industrial machine tools as traceable measurement systems. Through the test cases performed, the novel concepts proposed, and solutions tested, a series of fundamental questions have been addressed. Thus, providing new knowledge and use to future researchers, engineers, consultants and manufacturing professionals.
6

Fiderer, Lukas J. [Verfasser], and Daniel [Akademischer Betreuer] Braun. "New Concepts in Quantum Metrology : Dynamics, Machine Learning, and Bounds on Measurement Precision / Lukas J. Fiderer ; Betreuer: Daniel Braun." Online-Ressource, Tübingen : Universitätsbibliothek Tübingen, 2020. http://d-nb.info/1212025334/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "On-Machine metrology":

1

Nomura, Takashi, and Kazuhide Kamiya. "On-Machine Measurements." In Handbook of Optical Metrology, 867–87. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2015. http://dx.doi.org/10.1201/b18328-38.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cai, Yindi. "Molecular Dynamics Characterization of a Force Sensor Integrated Fast Tool Servo for On-Machine Surface Metrology." In Precision Manufacturing, 1–28. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-10-4912-5_21-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cai, Yindi. "Molecular Dynamics Characterization of a Force Sensor Integrated Fast Tool Servo for On-Machine Surface Metrology." In Precision Manufacturing, 601–29. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-10-4938-5_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kamiya, Kazuhide, and Takashi Nomura. "On-Machine Measurements." In Handbook of Optical Metrology. CRC Press, 2009. http://dx.doi.org/10.1201/9781420019513.ch30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nomura, Takashi, and Kazuhide Kamiya. "On-Machine Measurements." In Handbook of Optical Metrology, 867–87. CRC Press, 2017. http://dx.doi.org/10.1201/b18328-34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gao, Wei. "On-machine roll profiler." In Surface Metrology for Micro- and Nanofabrication, 337–70. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-817850-8.00010-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jiang, Xianqian J., Feng Gao, Haydn Martin, James Williamson, and Duo Li. "On-Machine Metrology for Hybrid Machining." In Hybrid Machining, 239–68. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-813059-9.00010-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gao, Wei. "On-machine atomic force microscope." In Surface Metrology for Micro- and Nanofabrication, 305–36. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-817850-8.00009-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gao, Wei. "On-machine length gauge surface profiler." In Surface Metrology for Micro- and Nanofabrication, 225–69. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-817850-8.00007-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gao, Wei. "On-machine air-bearing surface profiler." In Surface Metrology for Micro- and Nanofabrication, 271–304. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-817850-8.00008-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "On-Machine metrology":

1

Morris, Michael North. "Dynamic Interferometry for On-Machine Metrology." In Frontiers in Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/fio.2010.stua3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cheng, Hsiang Nan, Katherine Overend, Yu Zhang, and Rongguang Liang. "On-machine metrology system (Conference Presentation)." In Dimensional Optical Metrology and Inspection for Practical Applications VI, edited by Song Zhang and Kevin G. Harding. SPIE, 2017. http://dx.doi.org/10.1117/12.2264882.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Novini, Amir R. "Fundamentals of on-line gauging for machine vision." In Industrial Vision Metrology, edited by Sabry F. El-Hakim. SPIE, 1991. http://dx.doi.org/10.1117/12.48232.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dong, Lizhi, Wenjin Liu, Ping Yang, Shuai Wang, Xing He, and Bing Xu. "Automatic online laser resonator alignment based on machine vision: analysis." In SPIE Optical Metrology, edited by Jürgen Beyerer and Fernando Puente León. SPIE, 2015. http://dx.doi.org/10.1117/12.2184585.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lai, Tao, Junfeng Liu, Shanyong Chen, Chaoliang Guan, Guipeng Tie, and Quan Liao. "Out-of-squareness measurement on ultra-precision machine based on the error separation." In SPIE Optical Metrology, edited by Bernd Bodermann, Karsten Frenner, and Richard M. Silver. SPIE, 2017. http://dx.doi.org/10.1117/12.2270171.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jiang, Lixing, Kuoyuan Sun, Fulai Zhao, and Xiangyang Hao. "Automatic detection system of shaft part surface defect based on machine vision." In SPIE Optical Metrology, edited by Jürgen Beyerer and Fernando Puente León. SPIE, 2015. http://dx.doi.org/10.1117/12.2184728.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jiang, Jiabin, Xiang Xiao, Guohua Feng, Zichen Lu, and Yongying Yang. "Detection and classification of glass defects based on machine vision." In Applied Optical Metrology III, edited by Erik Novak and James D. Trolinger. SPIE, 2019. http://dx.doi.org/10.1117/12.2528654.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bruzzone, Elisabetta, and Fulvia Mangili. "Calibration of a CCD camera on a hybrid coordinate measuring machine for industrial metrology." In Industrial Vision Metrology, edited by Sabry F. El-Hakim. SPIE, 1991. http://dx.doi.org/10.1117/12.48240.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ermolaev, Petr A., and Maxim A. Volynsky. "Interferometric signals analysis based on the extended Kalman filter tuned by machine learning technique." In SPIE Optical Metrology, edited by Peter Lehmann, Wolfgang Osten, and Armando Albertazzi Gonçalves. SPIE, 2017. http://dx.doi.org/10.1117/12.2269653.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

El-Hakim, Sabry F. "A Stereo Vision System For On-Machine Dimensional Metrology." In SPIE 1989 Technical Symposium on Aerospace Sensing, edited by Mohan M. Trivedi. SPIE, 1989. http://dx.doi.org/10.1117/12.969281.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії
Current page language: Ukrainian.
You might want to see the page in this language: English.
Change language