Добірка наукової літератури з теми "Resistive random-access memory, ReRAM"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Resistive random-access memory, ReRAM".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Resistive random-access memory, ReRAM":

1

Kim, Hyojung, Ji Su Han, Sun Gil Kim, Soo Young Kim, and Ho Won Jang. "Halide perovskites for resistive random-access memories." Journal of Materials Chemistry C 7, no. 18 (2019): 5226–34. http://dx.doi.org/10.1039/c8tc06031b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Halide-perovskites-based resistive random-access memory (ReRAM) devices are emerging as a new class of revolutionary data storage devices because the switching material—halide perovskite—has received considerable attention in recent years owing to its unique and exotic electrical, optical, and structural properties.
2

Akinaga, Hiroyuki, and Hisashi Shima. "Resistive Random Access Memory (ReRAM) Based on Metal Oxides." Proceedings of the IEEE 98, no. 12 (December 2010): 2237–51. http://dx.doi.org/10.1109/jproc.2010.2070830.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shan, Yingying, Zhensheng Lyu, Xinwei Guan, Adnan Younis, Guoliang Yuan, Junling Wang, Sean Li, and Tom Wu. "Solution-processed resistive switching memory devices based on hybrid organic–inorganic materials and composites." Physical Chemistry Chemical Physics 20, no. 37 (2018): 23837–46. http://dx.doi.org/10.1039/c8cp03945c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chen, Yu-Li, Mon-Shu Ho, Wen-Jay Lee, Pei-Fang Chung, Babu Balraj, and Chandrasekar Sivakumar. "The mechanism underlying silicon oxide based resistive random-access memory (ReRAM)." Nanotechnology 31, no. 14 (January 16, 2020): 145709. http://dx.doi.org/10.1088/1361-6528/ab62ca.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lee, Hong Sub, Kyung Mun Kang, Woo Je Han, Tae Won Lee, Chang Sun Park, Yong June Choi, and Hyung Ho Park. "A Study on the Resistive Switching of La0.7Sr0.3MnO3 Film Using Spectromicroscopy." Applied Mechanics and Materials 597 (July 2014): 184–87. http://dx.doi.org/10.4028/www.scientific.net/amm.597.184.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Resistive random access memory (ReRAM) is a promising candidate for next generation nonvolatile memory. La0.7Sr0.3.MnO3 (LSMO) of perovskite manganite family has a great deal of attention for ReRAM material because it makes resistive switching (RS) of interface type without a “forming process”. However, the full understanding of the electronic structure and RS mechanism of LSMO remains a challenging problem. Therefore, this study performed spectromicroscopic analysis to understand the relation between the change of electronic structure and RS characteristic. The results demonstrated the electron occupation by field-induced oxygen vacancies and strong correlation effects.
6

Moriyama, Takumi, Takahiro Yamasaki, Takahisa Ohno, Satoru Kishida, and Kentaro Kinoshita. "Formation Mechanism of Conducting Path in Resistive Random Access Memory by First Principles Calculation Using Practical Model Based on Experimental Results." MRS Advances 1, no. 49 (2016): 3367–72. http://dx.doi.org/10.1557/adv.2016.461.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRACTFor practical use of Resistive Random Access Memory (ReRAM), understanding resistive switching mechanism in transition metal oxides (TMO) is important. Some papers predict its mechanism by using first principles calculation; for example, TMO become conductive by introducing oxygen vacancy in bulk single crystalline TMO. However, most of ReRAM samples have polycrystalline structures. In this paper, we introduced a periodic slab model to depict grain boundary and calculated the surface energy and density of states for surfaces of NiO with various orientations using first-principles calculation to consider the effect of grain boundaries for resistive switching mechanisms of ReRAM. As a results, vacancies can be formed on the side surface of grain more easily than in grain. Moreover, we showed that surface conductivity depends on surface orientation of NiO and the orientation of side surface of grain can change easily by introduction of vacancies, which is the switching mechanism of NiO-ReRAM
7

Nakamura, Hisao, and Yoshihiro Asai. "Competitive effects of oxygen vacancy formation and interfacial oxidation on an ultra-thin HfO2-based resistive switching memory: beyond filament and charge hopping models." Physical Chemistry Chemical Physics 18, no. 13 (2016): 8820–26. http://dx.doi.org/10.1039/c6cp00916f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lodhi, Anil, Shalu Saini, Anurag Dwivedi, Arpit Khandelwal, and Shree Prakash Tiwari. "Bipolar resistive switching properties of TiO x /graphene oxide doped PVP based bilayer ReRAM." Journal of Micromechanics and Microengineering 32, no. 4 (February 21, 2022): 044001. http://dx.doi.org/10.1088/1361-6439/ac521f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract In this paper, firstly, some recently explored promising materials and processes for resistive random access memory (ReRAM) devices with bipolar switching mechanism along with their performance are discussed. Further, resistive switching behaviour of TiO x /graphene oxide (GO):poly(4-vinylphenol) (PVP) based bilayer in ReRAM devices is demonstrated. It was found that bipolar resistive switching behaviour is significantly enhanced by embedding 2D material such as GO in the organic polymer acting as switching layer. ReRAM devices with Ag/PVP:GO/TiO x /fluorine doped tin oxide (FTO) structure exhibited high ON/OFF current ratio (>103), low voltage operation, and high retention time. Bipolar resistive switching from these engineered active layers will have great potential for future large area and sustainable electronics.
9

Красников, Г. Я., О. М. Орлов та В. В. Макеев. "ИССЛЕДОВАНИЕ ЭФФЕКТА ПЕРЕКЛЮЧЕНИЯ И ТРАНСПОРТА ЗАРЯДА В БЕСФОРМОВОЧНОМ МЕМРИСТОРЕ НА ОСНОВЕ НИТРИДА КРЕМНИЯ С РАЗНЫМИ ТИПАМИ МЕТАЛЛА ВЕРХНЕГО ЭЛЕКТРОДА, "Электронная техника. Серия 3. Микроэлектроника"". Электронная техника. Серия 3. Микроэлектроника, № 1 (2020): 42–46. http://dx.doi.org/10.7868/s2410993220010054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Мемристорная резистивная память с произвольным доступом (ReRAM, Resistive Random Access Memory) вместе с памятью с изменением фазового состояния (PCM, Phase Change Memory), магниторезистивной памятью с произвольным доступом (MRAM, Magnetoresistive Random Access Memory), сегнетоэлектрической памятью (FeRAM, Ferroelectric Memories) [4] являются востребованными видами энергонезависимой памяти на новых альтернативных принципах. Нитрид кремния является перспективным резистивным переключающим слоем для мемристоров. В данной работе проведено экспериментальное исследование эффекта переключения и переноса заряда в мемристоре на основе нитрида кремния для разных типов металла (Ni, Co, Cu) верхнего электрода.
10

Min, Shin-Yi, and Won-Ju Cho. "Resistive Switching Characteristics of Nonvolatile Memory with HSQ Film Using Microwave Irradiation." Journal of Nanoscience and Nanotechnology 20, no. 8 (August 1, 2020): 4740–45. http://dx.doi.org/10.1166/jnn.2020.17805.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this study, we fabricated a resistive random access memory (ReRAM) of metal-insulator-metal structures using a hydrogen silsesquioxane (HSQ) film that was deposited by a low-cost solution process as a resistance switching (RS) layer. For post-deposition annealing (PDA) to improve the switching performance of HSQ-based ReRAMs, we applied high energy-efficient microwave irradiation (MWI). For comparison, ReRAMs with an as-deposited HSQ layer or a conventional thermally annealed (CTA) HSQ layer were also prepared. The RS characteristics, molecular structure modification of the HSQ layer, and reliability of the MWI-treated ReRAM were evaluated and compared with the as-deposited or CTA-treated devices. Typical bipolar RS (BRS) behavior was observed in all the fabricated HSQ-based ReRAM devices. In the low-voltage region of the high-resistance state (HRS) as well as the low-resistance state, current flows through the HSQ layer by an ohmic conduction mechanism. However, as the applied voltage increases in HRS, the current slope increases nonlinearly and follows the Poole–Frenkel conduction mechanism. The RS characteristics of the HSQ layer depend on the molecular structure, and when the PDA changes from a cage-like structure to a cross-linked network, memory characteristics are improved. In particular, the MWI-treated HSQ ReRAM has the largest memory window at the smallest operating power and demonstrated a stable endurance during the DC cycling test over 500 times and reliable retention at room (25 °C) and high (85 °C) temperatures for 104 seconds.

Дисертації з теми "Resistive random-access memory, ReRAM":

1

Li, Yanlong. "The Investigation of Inorganic Co Based ReRAM Devices and Organic Cu Doped PANI-CSA Top Electrode Based ReRAM Devices." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/97191.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Recently, the resistance switching random access memory (ReRAM) in several MIM systems has been studied extensively for applications to the next generation non-volatile memory (NVM) devices and memristors since the scaling of conventional memories based on floating gate MOSFETs is getting increasingly difficult. ReRAM is being considered one of the most promising candidates for next generation non-volatile memory due to its relatively high switching speed, superior scalability, low power consumption, good retention and simple fabrication method. Cu/TaOX/Pt resistive switching device is a very good candidate due to its well performance and well characterization. However, since platinum (Pt) acting as the inert electrode is not economical efficient for industrial production, a compatible replacement of Pt is highly desirable. The device property of Co based resistive switching devices has been explored in this work. Compared with Pt devices, electric characterization of the fabricated Cu/TaOX/Co devices exhibits very similar FORM, SET and RESET voltages for Cu conductive filaments. However, for the oxygen vacancy (VO) filament the Co device has a significant smaller FORM, SET and RESET voltages of VO filament, which can be partly attributed to the work function difference between Pt and Co of 1.35 V and partly to the impaired integrity properties of Co vs Pt inert electrode. The limit of SET-RESET operations is mainly due to the geometrical shape of the Cu conductive filament is more cylindered rather than Cone-like shape as well as the high Joules heat dissipation. What’s more, ReRAM is also the most promising candidate for a flexible memory, as a variety of materials can be used both inorganics, organics and even hybrid nanocomposites. Besides inorganic ReRAM device, we also fabricated an organic ReRAM device with the structure Cu doped PANI-CSA/O-AA/Al. We have manufactured ReRAM based on Cu-doped PANI-CSA polymer electrode, O-AA as the polymer solid electrolyte and Al as the bottom electrode for the first time. This polymer device shows a significantly lower forming voltage than inorganic ReRAM devices such as Cu/TaOX/Pt. Our results also demonstrate that our organic ReRAM is a promising candidate for inexpensive candidate for inexpensive and environmentally friendly memory devices. We have demonstrated that the FORM operation of the polymer devices depends on the concentration of Cu+ ions as well as the thickness of the polymer electrode.
M.S.
Although the scaling of conventional memories such as volatile dynamic random access memory (DRAM) and non-volatile flash technology is becoming increasingly difficult, new types of non-volatile memories, such as resistive switching memories, have recently attracted the attention of both industry and academia. Resistive switching memory is considered as the next generation non-volatile memory because of its excellent scalability, high switching speed, simple structure and low power consumption. What’s more, ReRAM is also a promising candidate for a flexible memory, as a variety of materials can be used both inorganics, organics and even hybrid nanocomposites. ReRAM shows unique nanoionics based filamentary switching mechanism. Besides the nonvolatile memory applications, resistive switching devices implement the formation of a memristor, which is the fourth basic electrical component and can be used for neuromorphic computing. First, we report the device property of Co based resistive switching devices with a structure of Cu/TaOX/Co layers. The I-V characteristics of the manufactured Cu/TaOX/Co devices shows very similar FORM, SET and RESET voltages for Cu conductive filaments compared with Pt device. However, the Co device has a significant smaller FORM, SET and RESET voltages for oxygen vacancy (VO) filaments, which can be partly attributed to the work function difference between Pt and Co of 13.5 eV and partly to the impaired integrity properties of Co vs Pt inert electrode. The main reason for the limit of SET-RESET operations is that high Joules heat dissipation. With high Joules heat accumulation, the maximum switching cycles of Co devices is up to 8 times, while in the case of Pt cases, it is almost unlimited. Secondly, we fabricated an organic ReRAM device with the structure Cu-doped PANI-CSA/O-AA/Al. Cu-doped PANI-CSA polymer electrode has been introduced for the first time as the top polymer electrode of a ReRAM device. Compared to inorganic ReRAM device, this polymer device can be operated at a significantly lower forming voltage than inorganic devices such as Cu/TaOX/Pt. We have demonstrated that our organic ReRAM is a promising candidate for environmentally friendly and flexible memory devices. Our results demonstrate the FORM operation of the polymer devices depend on the concentration of Cu+ ions as well as the thickness of the polymer top layer.
2

Schultz, Thomas. "ReRAM based platform for monitoring IC integrity and aging." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1573576246158436.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jovanovic, Natalija. "Bascules et registres non-volatiles à base de ReRAM en technologies CMOS avancées." Thesis, Paris, ENST, 2016. http://www.theses.fr/2016ENST0023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les mémoires et l'éléments séquentiels non-volatiles peuvent améliorer l'efficacité énergétique des appareils à piles en éliminant la consommation statique tout en maintenant l'état du système.Parmi les nouvelles technologies NVM intégrées, ReRAMs se distinguent par un temps de programmation rapide, une structure simple, compatible avec la technologie CMOS et très bien scalable. Les flip-flops non-volatiles (NVFF) basées sur ReRAM ont été implémentées dans des nœuds CMOS de 90nm ou plus et souffrent de problèmes de fiabilité dans les nœuds plus petits, en raison de hautes tensions de programmation et de formation. Cette thèse fait l'analyse de la conception robuste et fiable non volatile dans le nœud CMOS 28nm et ci-dessous. Elle présente deux nouvelles solutions de conception pour la programmation de dispositifs ReRAM. Les circuits de programmation sont appliqués en architecture NVFF qui utilise deux dispositifs ReRAM (2R). Une architecture alternative (1R) est également proposée afin d'obtenir une densité plus élevée et une consommation plus faible. Les solutions NVFF sont optimisées pour les conditions de programmation ReRAM qui améliorent l'endurance et minimisent la puissance necessaire pour la programmation. L'analyse statistique de la structure du FF et de son optimisation a été réalisée, afin d'évaluer les meilleures architectures de fonctionnement de restauration. Les NVFF sont implémentés en FDSOI CMOS 28nm et comparés à un FF d'une bibliothèque standard. Enfin, pour minimiser la surcharge de la zone NVFF sans affecter la robustesse des opérations non volatiles, un Fichier de registres non-volatils multi-ports (NVRF) basé sur la solution 1R NVFF est proposé
Non-volatile memories and flip-flops can improve the energy efficiency in battery-operated devices by eliminating the sleep-mode consumption, while maintaining the system state. Among emerging embedded NVM technologies, ReRAMs differentiate itself with a fast programming time, a simple CMOS-compatible structure and a good scalability. Previously proposed ReRAM-based non-volatile flip-flops (NVFF) have been implemented in 90nm or older CMOS nodes and suffer from CMOS reliability issues in scaled nodes due to high programming and forming voltages. This thesis makes the analysis of robust and reliable non-volatile design in 28nm CMOS node and below. It presents two novel thin-gate oxide CMOS design solutions for the programming of ReRAM devices. The programming circuits are applied in dual-voltage NVFF architecture which employs two ReRAM devices (2R). Alternative 1R NVFF architecture is also proposed in order to achieve higher density and lower consumption. With regard to the existing ReRAM technologies, given NVFF solutions are optimized for ReRAM programming conditions which improve endurance and minimize programming power. Statistical analysis of the FF core and its optimization was performed, to evaluate the best restore operation architectures which meet digital CMOS circuit design yield requirements. The NVFFs are implemented in 28nm CMOS FDSOI and benchmarked against a master slave flip-flop from a standard library and a data-retention flip-flop. Finally, to minimize the NVFF area overhead without impacting the robustness of \nv{} operations, multi-port non-volatile register file (NVRF) based on the 1R NVFF solution is proposed
4

Tan, Scott H. (Scott Howard). "Neuromorphic computing systems : crystalline resistive random access memory." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/127915.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, May, 2020
Cataloged from the official PDF of thesis.
Includes bibliographical references (pages 129-142).
Neuromorphic computing is a promising approach for efficient electronics by shaping computer hardware like the human brain. At the core of neuromorphic architectures are artificial synapses, which store conductance states to weight collections of electrical spikes according to Kirchoff's laws and Ohm's law. This thesis presents Silicon (Si)-based crystalline resistive random-access memory (crystalline RRAM) artificial synapses for neuromorphic computing. The main scaling bottleneck is poor temporal and spatial uniformity of artificial synapses. To the best of the author's knowledge, crystalline RRAM reported in this thesis have the lowest switching variations compared to other RRAM types. Controlling metal movement in resistive switching materials is extremely challenging. This thesis demonstrates two strategies to improve nanoscale control in crystalline RRAM: 1) intrinsic semiconductor regulation and 2) active metal alloying.
The first strategy relies on using defects to regulate resistive switching. Epitaxially-grown Silicon-Germanium (SiGe) on Si permits resistive switching via dislocations. Defect-selective chemical etching can increase ON/OFF ratio while maintaining low variations. The second approach to improve crystalline RRAM is active metal alloying. Pure silver (Ag) exhibits high mobility in Si due to thermodynamic repulsion between Ag and Si. Thermodynamic instability of Ag in Si induces poor weight stability, especially in low conductance states. This thesis demonstrates that adding a small amount of copper (Cu) to pure Ag can enhance weight stability because Cu can act as a bridge between Ag and Si to alleviate thermodynamic repulsion. Convolutional filtering and weight storage with 32 x 32 crystalline RRAM crossbar arrays are experimentally demonstrated using this approach. While these results are extremely promising, 2D crossbar scaling is limited by sneak currents.
Stacking artificial synapses in 3D could maximize scaling potential. However, 3D crystalline RRAM cannot be fabricated with single-crystalline materials that require high growth temperatures. Poly-crystalline Si could form 3D crystalline RRAM, however, resistive switching performance is inferior to single-crystalline RRAM, possibly due to free bonds. This thesis demonstrates hydrogen passivation can fix this problem. Hydrogenated doped poly-crystalline/micro-crystalline Si are presented as suitable materials for 3D neuromorphic computing cores. To conclude this thesis, monolithic character classifiers with micro-crystalline imaging and computing units are designed.
by Scott H. Tan.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Mechanical Engineering
5

Chowdhury, Madhumita. "NiOx Based Resistive Random Access Memories." University of Toledo / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1325535812.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Long, Branden Michael. "Fabrication and Characterization of HfO2 Based Resistive Random Access Memory Devices." University of Toledo / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1365166054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Parks, Jared D. "Hardware Authentication Enhancement of Resistive Random Access Memory Physical Unclonable Functions." Thesis, Northern Arizona University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10253956.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

Advancements in microprocessors and sensor technologies have led to many innovations in the Internet of Things (IoT). These developments have both improved the quality of life for individuals and led to a need for securing users' information. This is especially true in devices such as pacemakers, cars, and credit cards, which can provide information that can harm users. To protect users from hackers who want this information, Physical Unclonable Functions (PUFs) can be used. Memory-based PUF are especially useful, as they can be readily implemented on most systems without much effort or additional hardware. This device is also unique in that it is very difficult to clone and hackers will have a hard time reading the contents of the device. Resistive Random Access Memory (ReRAM) PUFs in particular provide a similar manufacturing process to current Flash technologies, making them easily integrated into current technologies. On top of being similar to manufacture, ReRAM devices are also lower power than flash, allowing them to be used in low power devices such as Radio Frequency Identification Tags. While this is an advantage, ReRAM devices are currently limited in use since they vary greatly in different operating conditions. In this paper, a statistical model is proposed to account for shifts that occur at different temperatures. To generate the model, a mean square error linear regression analysis was performed, and found that these devices can be loosely represented as mean shifted Gaussian distributions at different temperatures. This model allows for a better understanding of how the system will perform during the challenge response pair authentication process. It was also found that the error rate can be reduced to near zero using this method, but may need improvement due to the limitations of this data-set. These limitations can be seen with the bit error rate, however these were improved using multi-state soft decoding. This process compared a ternary and eight state grouping, which allows for a better understanding of how each cell affects the array. Along with the statistical model the system will have minimal burden on the servers during the challenge response process, as it is computationally simple. Future works will include an implementation of this system to further allow ReRAM to become a more powerful technology, and help innovate the IoT.

8

Valverde, Lucas. "Conception de cellules bipolaires commutables pour la technologie « Resistive Random Access Memory »." Mémoire, Université de Sherbrooke, 2014. http://hdl.handle.net/11143/6041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Avec le développement des technologies portables, les mémoires de type flash sont de plus en plus utilisées. Les compétences requises pour répondre au marché florissant augmentent chaque année. Cependant, les technologies actuelles sont basées sur l’intégration de transistors. Leurs performances impliquent un long temps d’écriture et des tensions d’opérations importantes. La technologie Resistive Random Access Memory (RRAM) permet de répondre aux problématiques liées aux mémoires de type flash. La simplicité de fabrication de ces mémoires permet une forte densité d’intégration à faible coût. Également, les performances attendues par cette technologie dépassent les performances actuelles de Dynamic Random Access Memory (DRAM). Les études réalisées actuellement au sein de la communauté scientifique permettent de déterminer les meilleures performances selon le choix des matériaux. Les premières études se concentraient sur l’oxyde de titane TiO2 en tant qu’isolant, puis avec l’augmentation de l’intérêt envers cette technologie le nombre d’oxydes étudiés s’est élargi. Les dispositifs conventionnels utilisent une couche d’oxyde comprise entre deux électrodes métalliques. En augmentant la densité de dispositifs dans des circuits en matrices croisées, l’isolation entre les points mémoires n’est pas garantie et les courants de fuites deviennent un facteur limitant. Pour éviter ces problèmes, le contrôle de chaque cellule est réalisé par un transistor, on parle d’architecture 1T1R avec n transistors nécessaires pour n points mémoires. En 2008 Dubuc[1] propose un nouveau procédé de fabrication: le procédé nanodamascène. En adaptant ce procédé, et en disposant deux cellules dos à dos, nous créons un composant qui ne nécessite plus de transistor de contrôle [2]. Cela permet, en outre, de réduire les courants de fuite et simplifie l’adressage de chaque cellule. Les dispositifs sont incorporés dans une couche offrant une surface planaire. Il n’y a pas de limite technique à la superposition des couches, ce qui permet une haute densité d’intégration dans le Back-end-of-line du CMOS (Complementary Metal Oxyde Semiconductor), offrant de nouveaux horizons à la technologie RRAM. Suivant les éléments précédents, mon projet de maîtrise a pour objectif de démontrer la possibilité de fabriquer des cellules RRAM en utilisant le procédé nanodamascène. Ce développement implique la fabrication, pour la première fois, de dispositifs micrométriques de type croisés et planaires en utilisant des architectures dont la fabrication est maîtrisée au sein du laboratoire. Cela permettra de mettre au point les différentes procédés de fabrication pour les deux types de dispositifs, de se familiariser avec les techniques de caractérisation électrique, d’acquérir des connaissances sur les matériaux actifs, et proposer des premiers dispositifs RRAM.
9

Kuan-LunFu and 傅冠倫. "Investigating the Plausibility of Integrating the Resistive Random-Access Memory (ReRAM) with Vertically-Coupled Microdisk Resonator (VCMR)." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/xu7ppb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

You-KuiHu and 胡宥奎. "Impact of Ultraviolet Light Radiation on the Switching Characteristics of Resistive Random-Access Memory (ReRAM) Devices of Different Dimensions." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/z7d3x8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立成功大學
微電子工程研究所
107
Resistive switching memory is a system in which the resistance of a material can be modulated between two nonvolatile states by applying an electrical pulse, which has the combined advantages of fast read/write speed, simplicity in structure, small device size and density, low activation bias voltage, low power consumption, allowably many periodic operating cycles and nonvolatile memory feature. These devices are some of the most promising candidates for the next generation of non-volatile computer memories, while other plausible applications have also been sought such as bio-inspired neuromorphic systems. There have been a handful of studies on light controllable resistance switching, which concludes that optical illumination can improve switching properties or be an enabler for resistance switching. In these studies, the ultraviolet (UV) irradiation was used to control the resistance by modulating the current. Among the materials considered, nickel oxide (NiO) potentially have a broad perspective in optical applications due to their relatively wide bandgap, high mobility, high transparency, remarkably good electrical and optical characteristics. Indium tin oxide (ITO) has well light transmittance and low resistance, which is suitable for illumination. In order to operate ReRAM in UV spectroscopic regime, the top and bottom electrode materials are made of ITO conductive film in order to facilitate the transmission of the UV irradiation. The spectral transparency of electrodes and reliable device performance are keys to ensuring its continual applicability. It is foreseeable in the future that unique applicability of ReRAM in UV will make its headway as a key component in many optoelectronic displaying products. The present research focuses on using Radio Frequency Magnetron Sputtering and sol-gel processing method to prepare NiO active layers. Then, the DC Magnetron Sputtering method is also adopted to deposit indium tin oxide (ITO) top electrode for the realization of the semi-transparent ReRAM devices and their current-voltage characteristics are subsequently evaluated. Specifically, a series of reliability tests have shown that the fabricated memories have endured up to 100 switching cycles. Here, the samples of the largest dimensions prepared by the Magnetron Sputtering method show that the current contrast ratio between high (HRS) and low (LRS) resistance state at 0.1V has achieved more than three orders of magnitude. Furthermore, the retention time measurement has also demonstrated that the memory storage capability of these ReRAMs remain in excellent operating condition after surviving more than 10,000 seconds of the test while the smallest size devices have yielded a substantially less data retention capability. In comparison, the typical memory state of the ReRAM fabricated by sol-gel processing method could not sustain more than 8,000 seconds. Finally, the extent of UV irradiation impact on ReRAM is then investigated. Major attention are concentrated in finding out a correlation between the UV responsivity and switching characteristics for NiO ReRAMs under study at low bias voltage. We found that the memory states associated with the ReRAM of the smallest feature sizes could be toggled relatively easy by UV irradiation at the smallest size.

Книги з теми "Resistive random-access memory, ReRAM":

1

Yu, Shimeng. Resistive Random Access Memory (RRAM). Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-031-02030-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Resistive random-access memory, ReRAM":

1

Yu, Shimeng. "RRAM Characterization and Modeling." In Resistive Random Access Memory (RRAM), 21–34. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-031-02030-8_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yu, Shimeng. "Introduction to RRAM Technology." In Resistive Random Access Memory (RRAM), 1–7. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-031-02030-8_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yu, Shimeng. "RRAM Array Architecture." In Resistive Random Access Memory (RRAM), 35–54. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-031-02030-8_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yu, Shimeng. "RRAM Device Fabrication and Performances." In Resistive Random Access Memory (RRAM), 9–19. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-031-02030-8_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Puglisi, F. M. "Noise in Resistive Random Access Memory Devices." In Noise in Nanoscale Semiconductor Devices, 87–133. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37500-3_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhuo, Victor Yiqian, Zhixian Chen, and King Jien Chui. "Resistive Random Access Memory Device Physics and Array Architectures." In Emerging Non-volatile Memory Technologies, 319–43. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-6912-8_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gilmer, David C., and Gennadi Bersuker. "Fundamentals of Metal-Oxide Resistive Random Access Memory (RRAM)." In Nanostructure Science and Technology, 71–92. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91896-9_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sribhuvaneshwari, H., and K. Suthendran. "A Novel March C2RR Algorithm for Nanoelectronic Resistive Random Access Memory (RRAM) Testing." In Communications in Computer and Information Science, 578–89. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5950-7_48.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nagata, Takahiro. "Bias-Induced Interfacial Redox Reaction in Oxide-Based Resistive Random-Access Memory Structure." In NIMS Monographs, 41–67. Tokyo: Springer Japan, 2020. http://dx.doi.org/10.1007/978-4-431-54850-8_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tak, Sheetal, and Madan Mali. "Efficient Resistive Defect Detection Technique for Performance Enhancement of Static Random Access Memory." In Lecture Notes in Electrical Engineering, 815–22. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3690-5_75.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Resistive random-access memory, ReRAM":

1

Kinoshita, K., R. Koishi, T. Moriyama, K. Kawano, H. Miyashita, S. S. Lee, and S. Kishida. "Reproducing Resistive Switching Effect by Soret and Fick Diffusion in Resistive Random Access Memory (ReRAM)." In 2015 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2015. http://dx.doi.org/10.7567/ssdm.2015.o-3-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Stellari, Franco, Ernest Y. Wu, Takashi Ando, Martin M. Frank, and Peilin Song. "Photon Emission Microscopy of HfO2 ReRAM Cells." In ISTFA 2021. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.istfa2021p0115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract In this paper, we discuss the use of spontaneous photon emission microscopy (PEM) for observing filaments formed in HfO2 resistive random access memory (ReRAM) cells. The setup employs a CCD and an InGaAs camera, revealing photon emissions in both forward (set) and reverse (reset) bias conditions. Photon emission intensity is modeled using an electric-field equation and inter-filament distance and density are determined assuming a uniform spatial distribution. The paper also discusses the use of high frame rate and prolonged photon emission measurements to assess lifetime and reliability and explains how single filament fluctuations and multiple filaments in a single cell were observed for the first time.
3

Chuang, Ricky W., Kuan-Lun Fu, and Zhe-Ya Zheng. "The integrated vertically coupled resistive random-access memory (ReRAM)-based microdisk resonator and the relevant performance evaluation." In Integrated Optics: Devices, Materials, and Technologies XXIV, edited by Sonia M. García-Blanco and Pavel Cheben. SPIE, 2020. http://dx.doi.org/10.1117/12.2545479.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chuang, Ricky W., Ming-Cheng Huang, You-Kui Hu, and Zhe-Ya Zheng. "The impact of ultraviolet light on the switching characteristics of NiO resistive random-access memory (ReRAM) devices." In Integrated Optics: Devices, Materials, and Technologies XXIV, edited by Sonia M. García-Blanco and Pavel Cheben. SPIE, 2020. http://dx.doi.org/10.1117/12.2545485.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chuang, Ricky W., Zhe-Ya Zheng, Cheng-Liang Huang, and Bo-Liang Liu. "Vertically-waveguide-coupled BaTiO3-based microdisk optical resonator equipped with the functionality of resistive random-access memory (ReRAM)." In Integrated Optics: Devices, Materials, and Technologies XXV, edited by Sonia M. García-Blanco and Pavel Cheben. SPIE, 2021. http://dx.doi.org/10.1117/12.2579129.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Shima, Hisashi, and Hiro Akinaga. "In-situ nanoscale characterization of annealing effect on TiN/Ti/HfOx/TiN Structure for Resistive Random Access Memory (ReRAM)." In 2012 IEEE 12th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2012. http://dx.doi.org/10.1109/nano.2012.6322064.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Shiraishi, K., M. Y. Yang, S. Kato, M. Araidai, K. Kamiya, T. Yamamoto, T. Ohyanagi, et al. "Physics in Charge Injection Induced On-Off Switching Mechanism of Oxide-Based Resistive Random Access Memory (ReRAM) and Superlattice GeTe/Sb2Te3 Phase Change Memory (PCM)." In 2013 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2013. http://dx.doi.org/10.7567/ssdm.2013.a-7-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yu-Tao Li, Hai-Ming Zhao, He Tian, Xue-Feng Wang, Wen-Tian Mi, Yi Yang, and Tian-Ling Ren. "Novel graphene-based resistive random access memory." In 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2016. http://dx.doi.org/10.1109/icsict.2016.7998952.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Song, Guanghui, Kui Cai, Xingwei Zhong, Jiang Yu, and Jun Cheng. "Coding for Resistive Random-Access Memory Channels." In GLOBECOM 2020 - 2020 IEEE Global Communications Conference. IEEE, 2020. http://dx.doi.org/10.1109/globecom42002.2020.9322291.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wu, Wenjuan, Xin Tong, Rong Zhao, Luping Shi, Hongxin Yang, and Yee-Chia Yeo. "Novel bipolar TaOx-based Resistive Random Access Memory." In 2011 11th Annual Non-Volatile Memory Technology Symposium (NVMTS). IEEE, 2011. http://dx.doi.org/10.1109/nvmts.2011.6137095.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Resistive random-access memory, ReRAM":

1

Chin, Matthew L., Matin Amani, Terrence P. O'Regan, A. G. Birdwell, and Madan Dubey. Effect of Atomic Layer Depositions (ALD)-Deposited Titanium Oxide (TiO2) Thickness on the Performance of Zr40Cu35Al15Ni10 (ZCAN)/TiO2/Indium (In)-Based Resistive Random Access Memory (RRAM) Structures. Fort Belvoir, VA: Defense Technical Information Center, August 2015. http://dx.doi.org/10.21236/ada623815.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії