Добірка наукової літератури з теми "Rossby waves"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Rossby waves".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

За допомогою хмари тегів ви можете побачити ще більше пов’язаних тем досліджень, а відповідні кнопки після кожного розділу сторінки дозволяють переглянути розширені списки книг, статей тощо на обрану тему.

Статті в журналах з теми "Rossby waves":

1

Knessl, Charles, and Joseph B. Keller. "Rossby Waves." Studies in Applied Mathematics 94, no. 4 (May 1995): 359–76. http://dx.doi.org/10.1002/sapm1995944359.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Müller, Detlev. "Trapped Rossby waves." Physical Review E 61, no. 2 (February 2000): 1468–85. http://dx.doi.org/10.1103/physreve.61.1468.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cheverry, Christophe, Isabelle Gallagher, Thierry Paul, and Laure Saint-Raymond. "Trapping Rossby waves." Comptes Rendus Mathematique 347, no. 15-16 (August 2009): 879–84. http://dx.doi.org/10.1016/j.crma.2009.05.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

McKenzie, J. F., and K. Naidu. "Rossby-type electrostatic electron plasma waves." Journal of Plasma Physics 41, no. 2 (April 1989): 395–404. http://dx.doi.org/10.1017/s0022377800013945.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper explores the properties of Rossby-type electrostatic electron plasma waves at frequencies very much less than the electron gyrofrequency but very much greater than the ion gyrofrequency. Such waves represent the electron counterpart of ion Rossby waves, which propagate at frequencies very much less than the ion gyrofrequency in a plasma in which the ambient magnetic field possesses a spatial gradient perpendicular to its line of action. This feature simulates the ‘β-effect’ that operates in the classical atmospheric Rossby wave: the wave dynamics associated with both ion and electron Rossby waves are structurally similar to those associated with wave perturbations in a rotating fluid, where the β-effect arises from a spatial gradient in the Coriolis acceleration. It is shown that this plasma β-effect gives rise to a ‘new’ mode of the Rossby type, and in addition considerably modifies the conical wave propagation properties characteristic of the electron cyclotron mode. The highly dispersive and anisotropic nature of these waves is described in terms of the topology of the wavenumber surfaces concomitant with plane-wave solutions of the wave equation for the system as a whole.
5

Zhang, Yu, and Joseph Pedlosky. "Triad Instability of Planetary Rossby Waves." Journal of Physical Oceanography 37, no. 8 (August 2007): 2158–71. http://dx.doi.org/10.1175/jpo3100.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The triad instability of the large-scale, first-mode, baroclinic Rossby waves is studied in the context of the planetary scale when the Coriolis parameter is to its lowest order varying with latitude. Accordingly, rather than remain constant as in quasigeostrophic theory, the deformation radius also changes with latitude, yielding new and interesting features to the propagation and triad instability processes. On the planetary scale, baroclinic waves vary their meridional wavenumbers along group velocity rays while they conserve both frequencies and zonal wavenumbers. The amplitudes of both barotropic and baroclinic waves would change with latitude along a ray path in the same way that the Coriolis parameter does if effects of the nonlinear interaction are ignored. The triad interaction for a specific triad is localized within a small latitudinal band where the resonance conditions are satisfied and quasigeostrophic theory is applicable locally. Using the growth rate from that theory as a measure, at each latitude along the ray path of the basic wave, a barotropic wave and a secondary baroclinic wave are picked up to form the most unstable triad and the distribution of this maximum growth rate is examined. It is found to increase southward under the assumption that triad interactions do not cause a noticeable decrease in the quantity of the basic wave’s amplitude divided by the Coriolis parameter. Different barotropic waves that maximize the growth rate at different latitudes have almost the same meridional length scale, on the order of the deformation radius. With many rays starting from different latitudes on the eastern boundary and with wavenumbers on each of them satisfying the no-normal-flow condition, the resulting two-dimensional distribution of the growth rate is a complicated function of the relative relations of zonal wavenumbers or frequencies on different rays and the orientation of the eastern boundary. In general, the growth rate is largest on rays originating to the north.
6

KALADZE, T. D., D. J. WU, O. A. POKHOTELOV, R. Z. SAGDEEV, L. STENFLO, and P. K. SHUKLA. "Rossby-wave driven zonal flows in the ionospheric E-layer." Journal of Plasma Physics 73, no. 1 (February 2007): 131–40. http://dx.doi.org/10.1017/s0022377806004351.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract.A novel mechanism for the generation of large-scale zonal flows by small-scale Rossby waves in the Earth's ionospheric E-layer is considered. The generation mechanism is based on the parametric excitation of convective cells by finite amplitude magnetized Rossby waves. To describe this process a generalized Charney equation containing both vector and scalar (Korteweg–de Vries type) nonlinearities is used. The magnetized Rossby waves are supposed to have arbitrary wavelengths (as compared with the Rossby radius). A set of coupled equations describing the nonlinear interaction of magnetized Rossby waves and zonal flows is obtained. The generation of zonal flows is due to the Reynolds stresses produced by finite amplitude magnetized Rossby waves. It is found that the wave vector of the fastest growing mode is perpendicular to that of the magnetized Rossby pump wave. Explicit expression for the maximum growth rate as well as for the optimal spatial dimensions of the zonal flows are obtained. A comparison with existing results is carried out. The present theory can be used for the interpretation of the observations of Rossby-type waves in the Earth's ionosphere.
7

Schecter, David A., and Michael T. Montgomery. "Waves in a Cloudy Vortex." Journal of the Atmospheric Sciences 64, no. 2 (February 2007): 314–37. http://dx.doi.org/10.1175/jas3849.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract This paper derives a system of equations that approximately govern small-amplitude perturbations in a nonprecipitating cloudy vortex. The cloud coverage can be partial or complete. The model is used to examine moist vortex Rossby wave dynamics analytically and computationally. One example shows that clouds can slow the growth of phase-locked counter-propagating vortex Rossby waves in the eyewall of a hurricane-like vortex. Another example shows that clouds can (indirectly) damp discrete vortex Rossby waves that would otherwise grow and excite spiral inertia–gravity wave radiation from a monotonic cyclone at high Rossby number.
8

Onishchenko, O. G., O. A. Pokhotelov, R. Z. Sagdeev, P. K. Shukla, and L. Stenflo. "Generation of zonal flows by Rossby waves in the atmosphere." Nonlinear Processes in Geophysics 11, no. 2 (April 2004): 241–44. http://dx.doi.org/10.5194/npg-11-241-2004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. A novel mechanism for the short-scale Rossby waves interacting with long-scale zonal flows in the Earth's atmosphere is studied. The model is based on the parametric excitation of convective cells by finite amplitude Rossby waves. We use a set of coupled equations describing the nonlinear interaction of Rossby waves and zonal flows which admits the excitation of zonal flows. The generation of such flows is due to the Reynolds stresses of the finite amplitude Rossby waves. It is found that the wave vector of the fastest growing mode is perpendicular to that of the pump Rossby wave. We calculate the maximum instability growth rate and deduce the optimal spatial dimensions of the zonal flows as well as their azimuthal propagation speed. A comparison with previous results is made. The present theory can be used for the interpretation of existing observations of Rossby type waves in the Earth's atmosphere.
9

Biancofiore, L., and F. Gallaire. "Counterpropagating Rossby waves in confined plane wakes." Physics of Fluids 24, no. 7 (July 2012): 074102. http://dx.doi.org/10.1063/1.4729617.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zülicke, Christoph, and Dieter Peters. "Parameterization of Strong Stratospheric Inertia–Gravity Waves Forced by Poleward-Breaking Rossby Waves." Monthly Weather Review 136, no. 1 (January 2008): 98–119. http://dx.doi.org/10.1175/2007mwr2060.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The link between poleward-breaking Rossby waves and stratospheric inertia–gravity waves is examined. With a visual inspection of Ertel’s potential vorticity maps based on ECMWF analyses it was found that Rossby wave–breaking events occurred over northern Europe in about 40% of the winter days in 1999–2003. The majority of them were breaking poleward downstream. A total of 10 field campaigns were performed in the winters of 1999–2002 at Kühlungsborn, Germany (54°N, 12°E). They are related to such events and can be considered as representative for poleward-breaking Rossby waves. Inertia–gravity wave properties are diagnosed from radiosonde observations. They appeared to be shallower, slower, and stronger than the climatological mean for the north German lowlands. Hence, Rossby wave–breaking events are linked with strong stratospheric inertia–gravity wave activity. A novel parameterization of inertia–gravity wave generation and propagation is proposed. The stratospheric inertia–gravity wave action in the 16–20-km height range was parameterized with the synoptic-scale cross-stream ageostrophic wind, which accounts for imbalances in the upper-tropospheric jet streak. This empirical relationship is supported with quasigeostrophic theory. Effects of damping and critical level absorption are taken into account with Wentzel–Kramers–Brillouin theory. For verification of the parameterization with homogeneous meteorological fields in space and time, the 10 field campaigns were hindcasted with the nonhydrostatic fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model. About 80% of the variance in inertia–gravity wave action was found to be explained. For the 10 campaigns a close link was found between the poleward-breaking Rossby waves and the strong stratospheric inertia–gravity waves. The role of the polar vortex was twofold: first, it forced the poleward-oriented Rossby waves to break downstream and to form strong tropospheric jet streaks generating inertia–gravity waves. Second, the strong winds in the stratosphere favored the upward propagation of the inertia–gravity waves. The proposed new parameterization of inertia–gravity wave generation and propagation was validated and can be used to deduce mesoscale wave intensity from synoptic flow characteristics during poleward Rossby wave–breaking events.

Дисертації з теми "Rossby waves":

1

Cotto, Amaryllis. "Intermittently Forced Vortex Rossby Waves." Text, FIU Digital Commons, 2012. http://digitalcommons.fiu.edu/etd/553.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Wavelike spiral asymmetries are an intriguing aspect of Tropical Cyclone dynamics. Previous work hypothesized that some of them are Vortex Rossby Waves propagating on the radial gradient of mean–flow relative vorticity. In the Intermittently Forced Vortex Rossby Wave theory, intermittent convection near the eyewall wind maximum excites them so that they propagate wave energy outward and converge angular momentum inward. The waves’ energy is absorbed as the perturbation vorticity becomes filamented near the outer critical radii where their Doppler–shifted frequencies and radial group velocities approaches zero. This process may initiate outer wind maxima by weakening the mean–flow just inward from the critical radius. The waves are confined to a relatively narrow annular waveguide because of their slow tangential phase velocity and the narrow interval between the Rossby wave cut–off frequency, where the radial wavenumber is locally zero, and the zero frequency, where it is locally infinite.
2

Proehl, Jeffrey A. "Equatorial wave-mean flow interaction : the long Rossby waves /." Theses, Connect to this title online; UW restricted, 1988. http://hdl.handle.net/1773/10960.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Murphy, Darryl Guy. "Rossby waves in the Southern Ocean." Electronic Thesis or Diss., University of Exeter, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303178.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wood, R. G. "Rossby waves in mid-latitude oceans." Electronic Thesis or Diss., University of Essex, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379474.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kovalam, Sujata. "MF radar observations of tides and planetary waves." Title page, contents and abstract only, 2000. http://web4.library.adelaide.edu.au/theses/09PH/09phk878.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Copies of previously published articles inserted. Bibliography: p. 185-200. Data obtained from six radar stations covering a wide latitude range has been used to determine the global distribution of planetary waves and tides. In the process a number of data analyses techniques were considered for their characterisation.
6

Fyfe, John. "A barotropic stability study of free and forced planetary waves /." Electronic Thesis or Diss., McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=75433.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The stability of free and forced planetary waves in a $ beta$-channel is investigated with a barotropic model. The forced waves at equilibrium result from a constant mean-zonal wind interacting with a finite-amplitude topography.
The frequencies of all infinitesimal perturbations to the equilibrium flows are determined numerically as a function of the flow parameters. The results are interpreted using a truncated spectral model and related to those of previous studies with infinite $ beta$-planes. In contrast to some earlier analytical studies we find that unstable long waves $(L sb{x}$ $>$ $L sb{y})$ exist under superresonant conditions. We also report on the existence of an interesting travelling topographic instability.
The linear instability of a weakly non-zonal flow is investigated numerically and analytically (via WKB theory). The theory reproduces the qualitative nature of the numerically-determined fastest-growing mode.
Nonlinear integrations, involving many degrees of freedom, reveal that initially-infinitesimal disturbances may grow explosively to finite-amplitude. The longer-term integrations are interpreted using a statistical mechanical model.
7

Giannitsis, Constantine 1971. "Non-linear saturation of vertically propagating Rossby waves." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/53043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, February 2001.
Includes bibliographical references (p. 203-208).
Linear quasi-geostrophic theory predicts an exponential amplitude increase with height for Rossby waves propagating vertically through a stratified atmosphere, as a result of wave activity density conservation. At the same time layer-wise conservation of potential enstrophy constrains wave amplitudes, given the limited amount of potential enstrophy available in the initial mean flow. A break down of linear theory is thus expected above a certain critical wave amplitude, raising the question of how the non-linear flow reacts to limit the vertical penetration of waves. Keeping in mind the potential importance for the dynamics of the winter stratosphere, where strong wave penetration and amplitude growth are often observed, the issue of wave saturation in a non-linear flow is examined in a generally abstract context, through a variety of simple model studies. We thus consider the cases of a topographically forced barotropic beta plane channel model, of vertical propagation through a three-dimensional beta plane channel model, and of a polar coordinate model with realistic basic state and geometry. In the barotropic model transient wave growth is forced through the use of bottom topography and the deviations of the non-linear flow evolution from the predictions of both a linear and a quasi-linear analytical solution are examined for strong topographic anomalies. The growth of the forced wave is found to decelerate the zonal mean flow which in turn reduces the topographic forcing. Wave-mean flow interactions are thus found to be sufficient in leading to saturation of the eddy amplitudes. Interestingly it is the formation of zonal mean easterlies, rather than the depletion of mean available potential enstrophy, that is found to be the crucial factor in the saturation dynamics. Similar results are obtained for the case of vertical propagation through a three dimensional beta plane channel. The vertical penetration of the forced wave is shown to cause a reduction of the zonal mean winds and mean potential vorticity gradients in the center of the channel, eventually leading to the formation of either a critical line or a refractive index turning surface. In both cases the penetration of the wave to high altitudes is prohibited, thus constraining wave amplitudes. While signs of non-linear behaviour are clear in synoptic maps of potential vorticity, wave-wave interactions are found to play a secondary role in the saturation process. The results of the three-dimensional beta plane channel model are then extended to a more realistic set-up, using a polar coordinate model with a basic state based on the observed winter stratosphere climatology. The basic conclusions of the idealized study are shown to remain unchanged.
by Constantine Giannitsis.
Ph.D.
8

Ash, Ellis R. "Rossby waves and mean currents in the Southern Ocean." Electronic Thesis or Diss., University of Edinburgh, 2000. http://hdl.handle.net/1842/11542.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dynamics in the Southern Ocean are dominated by the Antarctic Circumpolar Current (ACC), and this large eastward current has an important influence on the earth's climate. Output from the last six years of the Fine Resolution Antarctic Model, where the mean flow is known, is used to develop techniques for quantifying Rossby waves and eddy activity. Some eastward jets in the mean flow are found to act as waveguides for Rossby waves. Phase speeds are found to increase linearly with frequency, but do not vary with the strength of mean flow. The reason for this is demonstrated using the dispersion relation, but it is shown that Rossby waves cannot be used to measure mean flows in the ACC without a further understanding of the theory involved. A property of the time-average eddy activity, known as the eddy orientation angle, is shown to indicate the axes of the prominent eastward jets in the mean flow. This shows that eddies are acting to force these jets. Five yeas of measurements from the TOPEX/POSEIDON satellite mission are used to identify Rossby waves in the real ocean. Coherent Rossby wave propagation is again confined to localised regions, some of which act as waveguides. Phase speeds are measured in these regions, and shown to be consistent with previous measurements of Rossby waves. An improved resolution dataset, combining TOPEX/POSEIDON and ERS altimetry measurements, is used to analyse the time-average eddy activity and associated forcing on the mean flow in unprecedented detail. Current data from cruises of the World Ocean Circulation Experiment are used in conjunction with altimetry data to estimate the mean flow at locations along ship tracks. Using these estimates, and the position of temperature fronts as an indication of prominent jets in the mean flow, the eddy forcing is shown to be different to that observed in FRAM. Instead of forcing the mean flow, eddies are being generated within the jets which are likely to be maintained by topographic forcing.
9

Yang, Gui-Ying. "Propagation of nonstationary Rossby waves and extratropical-tropical interaction." Electronic Thesis or Diss., University of Reading, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.646005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The propagation of Rossby waves with positive and negative frequency, corresponding to eastward and westward phase speeds respectively, is investigated. The techniques used are theoretical analysis, ray tracing, and initial value problems in barotropic and baroclinic numerical models. It is found that the characteristics of positive and negative frequency Rossby waves can differ significantly from each other andfrom those of stationary, zero frequency Rossby waves. However, general deductions from studies of stationary Rossby waves are still found to be valid. Using an analytic Gill-type model and a dry primitive equation model with only idealised vorticity or thermal forcing, a possible trigger mechanism for the Madden Julian Oscillation (MJO) has been studied. The results show that eastward moving forcing in the subtropics or extratropics can lead to a significant equatorial Kelvin wave response which tends to be a maximum in the African/Indian Ocean sector, and is enhanced by easterly winds in the upper troposphere. It is suggested . that one mechanism for initiating the MJO is for eastward moving extratropical waves to excite a large equatorial response, sufficient to trigger large-scale convection, in the presence of favourable easterly winds in the upper troposphere. The dry primitive equation model is used to study the possible interaction of atmospheric flow in the two hemispheres and the triggering of other equatorial waves. It is found that stationary and westward moving forcing in the Northern Hemisphere extratropics can give a significant Southern Hemisphere response. A westward moving forcing in the subtropics, with a period of several days, can trigger the equatorial mixed Rossby-gravity and n=l Rossby waves. The zonal basic flow is found to have a significant effect on these equatorial wave responses.
10

Jonsson, Eskil. "Modelling the Formation and Propagation of Orographic Rossby Waves." Student thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-325188.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Orographic Rossby waves are the main mechanism by which the jet streams meander aroundthe Earth and have possibly far-reaching impacts on weather and climate (chapter 1). Hence,they are of particular importance to study and this project should serve as a starting point inwhat to consider when trying to model these waves. For example, we have to account forpressure gradients, Coriolis effect, orography, potential vorticity conservation and also Earth’scurvature at this scale. These are covered in detail in ch. 2 and adapted to the Shallow WaterEquations. In addition, some entry-level numerical techniques for solving these equations arepresented throughout ch. 2.4 and then implemented for the global-scale Shallow WaterEquations with conserved potential vorticity in ch. 3. The model is validated to work for typicalshallow water flows in a bath tub and passes common tests like the Gaussian curve test (ch.4.1). However, when considering atmospheric flows (ch. 4.2) it becomes evident that ourmodel, as well as our numerical methods are lacking and cannot reproduce Rossby waves ina stable manner. Hence, a heavily modified version of Hogan’s model (Hogan, n.d) isemployed with a simplified numerical scheme. With these corrections, orographic Rossbywaves appear to naturally form at appropriate locations. However, they do not fully exhibit theexpected behaviours discussed in ch. 2.2. Even Hogan’s model appears to have severelimitations as waves propagate in the wrong direction. Hence, this study is not complete andwarrants further development in order to be useful.
Orografiska Rossby-vågor är den huvudsakliga mekanismen genom vilken jetströmmarnaslingrar runt jorden och kan ha en omfattande inverkan på väder och klimat (kapitel 1). Därförär de av särskild betydelse att studera och detta projekt bör fungera som en utgångspunkt förvad man måste överväga när man försöker modellera dessa vågor. Till exempel så måste vi tahänsyn till tryckgradienter, Coriolis-effekten, orografi, potentiell vorticitetsbevarande och ävenjordens krökning på denna skala. Dessa beskrivs i detalj i kap. 2 och anpassas tillrörelseekvationerna för grunt vatten (Saint-Venant-ekvationerna). Därefter presenteras någranumeriska tekniker på grundläggande nivå för att lösa dessa ekvationer i kap. 2.4, varvid desedan implementeras för de globala Saint-Venant-ekvationerna med bevarad potentiellvorticitet i kap 3. Modellen är validerad för typiska grunda vattenflöden i ett badkar ochpasserar vanliga numeriska tester så som Gauss-kurvtestet (kap. 4.1) och bore-testet. Mennär vi överväger atmosfäriska flöden (kap. 4.2) blir det tydligt att våra modeller och numeriskametoder är primitiva och inte kan reproducera Rossby-vågor på ett stabilt sätt. Därmed,modifierar vi Hogans modell (Hogan, n.d) för att passa vår modell vilket resulterar orografiskaRossby-vågor. Dock så är dessa förskjutna och stämmer inte riktigt överens med teorin i kap.2.2. Även Hogans modell visar sig ha allvarliga begränsningar då vågorna propagerar i felriktning. Därmed är denna studie ej komplett och kräver ytterligare utveckling för att varaanvändbar.

Книги з теми "Rossby waves":

1

Volland, Hans. Atmospheric tidal and planetary waves. Dordrecht: Kluwer Academic Publishers, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Stanford, John. Rossby-gravity waves in tropical total ozone data. [Washington, DC: National Aeronautics and Space Administration, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Stanford, John. Rossby-gravity waves in tropical total ozone data. [Washington, DC: National Aeronautics and Space Administration, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chiu, Ching-Sang. Estimation of planetary wave parameters from the data of the 1981 Ocean Acoustic Tomography Experiment. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kelley, Michael C. Aspects of weather and space weather in the earth's upper atmosphere: The role of internal atmospheric waves. Washington, D.C: National Academy Press, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Haack, Tracy. Mixed convective/dynamic roll vortices and their effects on initial wind and temperature profiles. University Park, PA: Dept. of Meteorology, Pennsylvania State University, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kessler, William S. Observations of long Rossby waves in the northern tropical Pacific. Seattle, Wash: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Grigorkina, R. G. Vozdeĭstvie taĭfunov na okean. Leningrad: Gidrometeoizdat, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Grigorkina, R. G. Vozdeĭstvie taĭfunov na okean. Leningrad: Gidrometeoizdat, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Swart, H. E. de. Vacillation and predictability properties of low-order atmospheric spectral models. Amsterdam, the Netherlands: Centrum voor Wiskunde en Informatica, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Rossby waves":

1

Pedlosky, Joseph. "Rossby Waves." In Waves in the Ocean and Atmosphere, 149–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05131-3_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Monin, A. S. "Rossby Waves." In Theoretical Geophysical Fluid Dynamics, 237–75. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1880-1_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zeytounian, Radyadour. "Rossby Waves." In Asymptotic Modeling of Atmospheric Flows, 44–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-73800-5_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kamenkovich, V. M., M. N. Koshlyakov, and A. S. Monin. "Theory of Rossby Waves." In Synoptic Eddies in the Ocean, 34–130. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4502-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pedlosky, Joseph. "Rossby Waves (Continued), Quasi-Geostrophy." In Waves in the Ocean and Atmosphere, 159–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05131-3_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dolzhansky, Felix V. "The Obukhov–Charney Equation; Rossby Waves." In Fundamentals of Geophysical Hydrodynamics, 61–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31034-8_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Boyd, John P. "Kelvin, Yanai, Rossby and Gravity Waves." In Dynamics of the Equatorial Ocean, 35–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-55476-0_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Skiba, Yuri N. "Stability of Rossby-Haurwitz (RH) Waves." In Mathematical Problems of the Dynamics of Incompressible Fluid on a Rotating Sphere, 109–33. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65412-6_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pedlosky, Joseph. "Energy and Energy Flux in Rossby Waves." In Waves in the Ocean and Atmosphere, 173–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05131-3_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hirooka, Toshihiko, and Isamu Hirota. "Further Evidence of Normal Mode Rossby Waves." In Middle Atmosphere, 277–89. Basel: Birkhäuser Basel, 1989. http://dx.doi.org/10.1007/978-3-0348-5825-0_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Rossby waves":

1

Zaqarashvili, T. V., and Ivan Zhelyazkov. "Rossby Waves in Rotating Magnetized Fluids." In SPACE PLASMA PHYSICS: School of Space Plasma Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3137937.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sukoriansky, Semion, Nadejda Dikovskaya, Roger Grimshaw, and Boris Galperin. "Rossby waves and zonons in zonostrophic turbulence." In WAVES AND INSTABILITIES IN SPACE AND ASTROPHYSICAL PLASMAS. AIP, 2012. http://dx.doi.org/10.1063/1.3701355.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chen, Y. N., U. Haupt, U. Seidel, and M. Rautenberg. "Experimental Investigation of the Longitudinal-Vortex-Nature of Rotating Stall in Vaneless Diffusers of Centrifugal Compressors." In ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/91-gt-099.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Rotating stall in a vaneless diffuser of a centrifugal compressor has been found to be guided by Rossby waves, which are composed of branches of high and low pressures (Chen, Haupt and Rautenberg, 1990a). The branch of the high pressure leads the unstalled region and that of the low pressure leads the stalled region. The phase velocity of the Rossby waves is then the pattern speed of the stall cell. We report here an additional experimental result, according to which the flow of rotating stall is composed of a longitudinal spiral vortex pair. The vorticity and the axis of the longitudinal vortex were measured by means of two pressure transducers fixed at a distance of 2 mm to the opposite walls of the diffuser downstream of its inlet. The analysis of the experimental result of Tsurusaki, Imaichi and Miyake (1987) about the fields of the total and fluctuating velocities of rotating stall in the vaneless diffuser reveals furthermore that the longitudinal spiral vortex is centred on the through flow. The two vortices of the pair stay side by side in touch but without mixing because of their opposite rotational sense. The longitudinal vortices make about 1 1/4 turns from the inlet to the outlet of the diffuser under the guidance of the Rossby waves. The vorticity of the longitudinal vortex is determined from the experimental result. Furthermore, the experimental result reveals that the fronts along the high pressure ridges and the low pressure troughs of the Rossby wave pattern are themselves longitudinal vortices. Then these fronts possess a behaviour of the jet stream, which is associated with the Rossby waves of the atmosphere in the midlatitude. Finally, the origin of the vorticity of the longitudinal vortices along the through flow and the Rossby-wave front is derived based on the experimental results obtained by Hergt and Jaberg (1988), and Hide (1958).
4

Campbell, L. J. "Nonlinear dynamics of Rossby waves in a western boundary current." In ADVANCES IN FLUID MECHANICS 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/afm06045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chu, Peter C., and Chin-Lung Fang. "Observed Rossby waves in the South China Sea from satellite altimetry data." In Remote Sensing, edited by Charles R. Bostater, Jr. and Rosalia Santoleri. SPIE, 2004. http://dx.doi.org/10.1117/12.509064.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

KALADZE, T. D., D. J. WU, O. A. POKHOTELOV, R. Z. SAGDEEV, L. STENFLO, and P. K. SHUKLA. "ZONAL FLOW GENERATION BY MAGNETIZED ROSSBY WAVES IN THE IONOPHERIC E-LAYER." In Proceedings of the 12th Regional Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770523_0026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

del-Castillo-Negrete, D., J. M. Finn, and D. C. Barnes. "The modified drift-Poisson model: Analogies with geophysical flows and Rossby waves." In Non-neutral plasma physics III. AIP, 1999. http://dx.doi.org/10.1063/1.1302113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Morey, Steve, Dmitry Dukhovskoy, and Cortis K. Cooper. "SS: Metocean: Measurements and Modeling Measurements of Topographic Rossby Waves along the Sigsbee Escarpment." In Offshore Technology Conference. Offshore Technology Conference, 2010. http://dx.doi.org/10.4043/20694-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dai, Yuqiang, Fengxia Liu, Jintao Wu, Wei Wei, Dapeng Hu, and Xuewu Liu. "Influence of Skewing of Contact Face on Performance of Wave Rotor Refrigerators and Superchargers." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63449.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
As a novel generation of rotational gas wave machines, wave rotor machines such as wave rotor refrigerators (WRR) and wave rotor superchargers (WRS) are unsteady flow devices. In their passages two gas streams (with different pressure or even different phases) comes into direct contact can exchange energy due to the movement of shock waves and expansion waves. A detailed study shows that, when rotor channels open to the high pressure port gradually, the contact face in rotor channels inevitably skews, which is always accompanied with reflection of shockwaves. This causes very large energy dissipation and influences adversely on the refrigeration performance of WRR or the supercharging performance of WRS. In this work, factors such as centrifugal forces, Coriolis forces, gradual channel opening and gradual channel closing, etc, which influence the wave transportation and skewing of shock waves and contact faces are studied by means of computational fluid dynamics and experiments. The skewing of contact faces causes uneven distribution of velocity and large local loss. With rotation Mach number smaller than 0.3, the skewing of contact face can be alleviated. To reduce the adverse influence of rotation Mach number, a smaller rotor channel width or higher rotational speed is necessary. The rotation effect plays an important role for the skewing of gas discontinuities. Both the centrifugal and Coriolis forces of wave rotor cannot be ignored with the Rossby number of 1.3∼3.5. To reduce the skewing loss of contact face, a lower rotational speed seems necessary. The rotation speed of wave rotors has dialectical influences on the skewing of shock waves and contact faces. The jetting width of high pressure port is the key factor of the gradual opening of rotor channels. A feasible way to reduce skewing losses of gas waves is to optimize the ratio between high pressure port width and channel width. The validation experiments have got at least 3∼5% rise of isentropic efficiency for WRRs.
10

Da, Chaojiu, and Jian Song. "The numerical simulation of the evolution of the amplitude of nonlinear solitary Rossby waves in a sort of time-dependent zonal flow." In 2012 8th International Conference on Natural Computation (ICNC). IEEE, 2012. http://dx.doi.org/10.1109/icnc.2012.6234578.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Rossby waves":

1

Peng, Melinda S. Role of Vortex Rossby Waves on Tropical Cyclone Intensity. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada532809.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Peng, Melinda S. Role of Vortex Rossby Waves on Tropical Cyclone Intensity. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada541436.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Peng, Melinda S. Role of Vortex Rossby Waves on Tropical Cyclone Intensity. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada631046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Montgomery, Michael T., and Lloyd J. Shapiro. Vortex Rossby Waves and Hurricane Evolution in the Presence of Convection and Potential Vorticity and Hurricane Motion. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada628370.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії
Current page language: Ukrainian.
You might want to see the page in this language: English.
Change language