Добірка наукової літератури з теми "SIQO DC-DC converter"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "SIQO DC-DC converter".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "SIQO DC-DC converter":

1

Lindiya, Augusti, S. Palani, and K. Vijayarekha. "Compensator Based Perfromance Enhancement Strategy for a SIQO Buck Converter." International Journal of Power Electronics and Drive Systems (IJPEDS) 7, no. 3 (September 1, 2016): 800. http://dx.doi.org/10.11591/ijpeds.v7.i3.pp800-815.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
<span>This paper attempts to design lag and lag-lead compensators for improving the performance of a Single Inductor Quad Output (SIQO) dc-dc buck converter in terms of time domain and frequency domain specifications. It develops the state space averaged model to find the duty ratio of the desired output voltages at steady state. The exercise arrives at the transfer function model from the state space averaged model through the use of its lumped small signal equivalent circuit which allows analyzing the performance of the system in frequency and time domains. The responses are derived in the MATLAB/Simulink® using discrete components incorporating compensators of the converter. The hardware results obtained using Data Acquisition Module DT9834® interfaced to MATLAB/Simulink® and prototype model establish the performance of the compensator based converter and further emphasize its ability to minimize the ripples over a range of operating loads. </span>
2

Wu, Shu, Yasunori Kobori, and Haruo Kobayashi. "A Simple Analog Feed-Forward Controller Design for DC-DC Buck Converter." Key Engineering Materials 643 (May 2015): 61–67. http://dx.doi.org/10.4028/www.scientific.net/kem.643.61.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper presents usage of analog feed-forward control to improve the transient response of DC-DC buck converters with pulse-width-modulation (PWM). The analog feed-forward controller is simple and does not require complicated calculations. Duty cycle is modulated directly based on the charge balance of the output capacitor. Compared with conventional feedback control, this simple feed-forward controller reduces control delay and provides a satisfactory transient response. We apply this technique to a Single-Inductor-Dual-Output (SIDO) buck converter as well as a Single-Inductor-Single-Output (SISO) buck converter, and show that its cross-regulation is improved. We have validated the proposed method with SIMetrix simulations.
3

Rao, S. Nagaraja, D. V. Ashok Kumar, and Ch Sai Babu. "Grid Connected Distributed Generation System with High Voltage Gain Cascaded DC-DC Converter Fed Asymmetric Multilevel Inverter Topology." International Journal of Electrical and Computer Engineering (IJECE) 8, no. 6 (December 1, 2018): 4047. http://dx.doi.org/10.11591/ijece.v8i6.pp4047-4059.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The paper presents distributed generation (DG) system in grid connected mode of operation with asymmetric multi-level inverter (AMLI) topology. Cascaded type DC-DC converter is employed to feed proposed AMLI topology. The DG output voltage (generally low voltage) is stepped up to the required level of voltage using high-gain DC-DC converter. Proposed AMLI topology consists of capacitors at the primary side. The output of high-gain DC-DC converter is fed to split voltage balance single-input multi-output (SIMO) circuit to maintain voltage balance across capacitors of AMLI topology. Cascaded DC-DC converters (both high-gain converter and SIMO circuit) are operated in closed-loop mode. The proposed AMLI feeds active power to grid converting DC type of power generated from DG to AC type to feed the grid. PWM pattern to trigger power switches of AMLI is also presented. The inverting circuit of MLI topology is controlled using simplified Id-Iq control strategy in this paper. With the proposed control theory, the active power fed to grid from DG is controlled and power factor is maintained at unity. The proposed system of DG integration to grid through cascaded DC-DC converters and AMLI structure is validated from fixed active power to grid from DG condition. The proposed system is developed and results are obtained using MATLAB/SIMULINK software.
4

Dhananjaya, Mudadla, and Swapnajit Pattnaik. "Design and implementation of a SIMO DC–DC converter." IET Power Electronics 12, no. 8 (July 2019): 1868–79. http://dx.doi.org/10.1049/iet-pel.2018.6217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chang, Chun-Kai, Paul C. P. Chao, Chun-Kai Cheng, Yuan-Po Cheng, and Durgesh Samadhiya. "MoP-29 Improving Performance of a Single Inductor Multi-Output (SIMO) DC-DC Converter Using Constant On-Time." Proceedings of JSME-IIP/ASME-ISPS Joint Conference on Micromechatronics for Information and Precision Equipment : IIP/ISPS joint MIPE 2015 (2015): _MoP—29–1_—_MoP—29–3_. http://dx.doi.org/10.1299/jsmemipe.2015._mop-29-1_.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

BM, Mmanjunath, Ashok Kumar D V, and Vijaya Kumar M. "A Simplified PWM Technique for Isolated DC-DC Converter Fed Switched Capacitor Multi-Level Inverter for Distributed Generation." International Journal of Power Electronics and Drive Systems (IJPEDS) 8, no. 3 (September 1, 2017): 1230. http://dx.doi.org/10.11591/ijpeds.v8.i3.pp1230-1239.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper presents a novel simplied PWM technique to drive switched capacitor type multi-level inverter fed from isolated type DC-DC converter for distributed generation. Distributed generation (DG) is renowned power generation at point of utility with no environmental aects and reduces transmission line losses. Photo-voltaic system is considered as renewable energy source for DG and the low voltage from PV system is boosted to required voltage using an isolated type single-input multi-output (SIMO) DC-DC converter. DC output from isolated SIMO DC-DC converter is fed to switched capacitor type multi-level inverter (SC-MLI) to feed the AC load. Isolated SIMO DC-DC converter apart from boosting the DG output voltage, also eliminates the problem of voltage unbalancing in SC-MLI topology. Closed loop operation of SIMO DC-DC converter employs only single PI controller instead of three controllers was presented in this paper. Modes of operation of SC-MLI and Novel PWM switching pattern was explained. Simulation of proposed system was developed using MATLAB/SIMULINK software. The prototype was developed for the proposed system and hardware results are also shown.
7

Takai, Nobukazu, Takashi Okada, Kenji Takahashi, Hajime Yokoo, Shunsuke Miwa, Kengo Tsushida, Hiroyuki Iwase, et al. "Single Inductor Bipolar Outputs DC-DC Converter with Current Mode Control Circuit." Key Engineering Materials 534 (January 2013): 220–26. http://dx.doi.org/10.4028/www.scientific.net/kem.534.220.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Mobile equipment such as organic-EL display, digital still camera and so on re-quire both positive and negative power supply voltage to obtain high quality. Single InductorMultiple-Output (SIMO) DC-DC converter can provide a pair of positive and negative outputvoltages with only one external inductor. This paper describes SIMO DC-DC Converter usingproposed current-mode control (CMC) circuit. The proposed CMC circuit realizes high responsespeed for the change of load current. Spectre simulations with 0.18m CMOS process parameterare performed to verify the validity of the proposed converter. The simulation results indicatethat the proposed converter has higher response time compared with conventional converter.
8

Tanaka, Shunsuke, Tatsunori Nagashima, Yasunori Kobori, Kotaro Kaneya, Takahiro Sakai, Biswas Sumit Kumar, Nobukazu Takai, and Haruo Kobayashi. "Design of Hysteresis Controlled Single-Inductor Multi-Output DC-DC Converter." Key Engineering Materials 643 (May 2015): 69–77. http://dx.doi.org/10.4028/www.scientific.net/kem.643.69.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This Paper Describes Application of the Hysteresis Control to the Single-Inductordual-Output (SIDO) Power Supply Circuit to Realize High Performance, Low Cost and Small Sizepower Supply Circuits. the Sidos can Realize Small Number of Inductors (hence Small Size Andlow Cost) in the System where Multiple Power Supplies are Required, but their Performance Isnot Very Good if Conventional SIDO Control Methods are Used. we Show with Simulation Andexperiment that the Hysteresis Control can Realize High Performance SIDO Converters.
9

Shiwalkar, Abhishek Kanchan, and Shilpa Ravindra Shinde. "Multiple output dc-dc converter derived from Cock-Croft Walton voltage multiplier and SIMO converter." International Journal of Research in Engineering and Innovation 4, no. 3 (2020): 137–42. http://dx.doi.org/10.36037/ijrei.2020.4303.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lindiya, S. Augusti, N. Subashini, and K. Vijayarekha. "Cross Regulation Reduced Optimal Multivariable Controller Design for Single Inductor DC-DC Converters." Energies 12, no. 3 (February 1, 2019): 477. http://dx.doi.org/10.3390/en12030477.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Single Inductor (SI) converters with the advantage of using one inductor for any number of inputs/outputs find wide applications in portable electronic gadgets and electrical vehicles. SI converters can be used in Single Input Multiple Output (SIMO) and Multiple Input Multiple Output (MIMO) configurations but they need controllers to achieve good transient and steady state responses, to improve the stability against load and line disturbances and to reduce cross regulation. Cross regulation is the change in an output voltage due to change in the load current at another output and it is an added constraint in SI converters. In this paper, Single Input Dual Output (SIDO) and Dual Input Dual Output (DIDO) converters with applications capable of handling high load current working in Continuous Conduction Mode (CCM) of operation are taken under study. Conventional multivariable PID and optimal Linear Quadratic Regulator (LQR) controllers are developed and their performances are compared for the above configurations to meet the desired objectives. Generalized mathematical models for SIMO and MIMO are developed and a Genetic Algorithm (GA) is used to find the parameters of a multivariable PID controller and the weighting matrices of optimal LQR where the objective function includes cross regulation as a constraint. The simulated responses reveal that LQR controller performs well for both the systems over multivariable PID controller and they are validated by hardware prototype model with the help of DT9834® Data Acquisition Module (DAQ). The methodologies used here generate a fresh dimension for the case of such converters in practical applications.

Дисертації з теми "SIQO DC-DC converter":

1

Troudi, Rami. "Étude, conception et structure de commande temps réel d'un onduleur multiniveau à partir d'une seule source DC ; applications énergies renouvelables et véhicules électriques." Thesis, Poitiers, 2021. http://www.theses.fr/2021POIT2262.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les travaux de recherche de la thèse de Rami Troudi répondent à trois problématiques :-la première est de concevoir un onduleur triphasé multiniveau pour des applications à base d’énergies renouvelables connectées au réseau de distribution, ou pour la motorisation des véhicules électriques. Dans la première application, l’utilisation de bras multiniveau limite fortement les inductances de couplage avec le réseau tandis que dans la deuxième application, le couple délivré par le moteur est de meilleure qualité.-la deuxième consiste à concevoir une structure de convertisseur DC-DC permettant de n’avoir qu’une seule source continue pour alimenter cet onduleur multiniveau. -la troisième est la conception d’une architecture de commande temps réel à base de microcontrôleurs permettant d’avoir une grande capacité d’évolution et de calcul et une facilité d’industrialisation.Le manuscrit de la thèse est organisé en quatre chapitres. Le premier chapitre présente un état de l’art des structures d’onduleur multiniveau. Cette technologie est devenue aujourd’hui un thème de recherche important. Ce chapitre donne les avantages et les inconvénients de chaque topologie d’onduleur multiniveau conventionnel ainsi que les nouvelles topologies permettant une réduction du nombre de composants. Ce chapitre fait aussi un état de l’art des structures de hacheurs avec une ou plusieurs entrées-sorties (MISO, MIMO et SIMO). Ce chapitre présente aussi les avantages et les inconvénients de chaque famille de structure avec leur commande. La fin du chapitre présente les nouvelles topologies retenues pour l’onduleur multiniveau et le hacheur SIQO (une entrée-quatre sorties).Le deuxième chapitre est consacré à la présentation de la structure de l’onduleur multiniveau proposé, ainsi qu’à l’étude de son mode de fonctionnement, de sa commande rapprochée et de son utilisation dans une application en boucle fermée. Ce chapitre montre que cette structure a l’avantage de minimiser les pertes dans les composants de puissance en ayant, à chaque instant, peu de composants qui conduisent le courant de chaque bras, ce qui permet d’augmenter son rendement. En plus, ce chapitre montre la simplicité de la commande rapprochée de l’onduleur en utilisant un algorithme très simple. Des essais expérimentaux sont donnés à la fin du chapitre après le descriptif de la maquette d’essai.Le troisième chapitre traite en détail la structure du convertisseur DC-DC SIQO utilisé pour alimenter l’onduleur multiniveau, son mode de fonctionnement, sa modélisation et le développement d’une commande multi-entrée multi-sortie (MIMO). Cette structure est conçue à partir d’un couplage de la structure SEPIC avec la structure à accumulation magnétique et du dédoublement de chaque sortie par un système d’aiguillage qui permet ainsi d’obtenir quatre sorties à partir d’une seule entrée DC. Chaque structure (SEPIC et à accumulation) gère deux sorties avec le calcul de deux rapports cycliques. Pour cela, une synthèse d’asservissement basée sur une méthode H_∞ est présentée pour être robuste aux variations des courants et aux changements de consigne. Les résultats des essais expérimentaux sont donnés à la fin du chapitre après le descriptif de la maquette d’essai.Le chapitre quatre aborde le développement de l’architecture de commande à base de microcontrôleurs. Cette structure est appliquée au contrôle de l’onduleur triphasé. Ce chapitre décrit toutes les fonctions qui composent cette architecture au niveau matériel et logiciel. Le fait de répartir les besoins matériels et algorithmiques sur plusieurs microcontrôleurs permet de faciliter l’évolution des demandes de fonctions supplémentaires à savoir le diagnostic et la reconfiguration d’un bras, ainsi que l’ajout de la fonction de filtrage actif. Cette architecture repose sur une communication par bus SPI (Serial Peripheral Interface) qui permet des échanges rapides entre les microcontrôleurs et aussi vers un système IHM (Interface Homme Machine)
Rami Troudi's thesis research work addresses three problematics:- the first is to design a three-phase multilevel inverter for applications based on renewable energies connected to the power grid, or for electric motor drive of electric vehicles. In the first application, the use of multilevel arms greatly limit the coupling inductances with the power grid, while in the second application, the torque delivered by the motor is of better quality.- the second is to design a DC-DC converter structure having only one DC source destinated to supply this multilevel inverter.- the third is the design of a real-time control architecture based on microcontrollers leading to a large capacity of evolution and calculation and an ease industrialization.The thesis manuscript is organized into four chapters.The first chapter presents a state of art of multilevel inverter structures. This technology is becoming an important research topic today. This chapter gives the advantages and disadvantages of each conventional multilevel inverter topology as well as the new topologies with a reduction in the number of components. This chapter also give a reviews of the state of art of chopper structures with one or multiple inputs-outputs (MISO, MIMO and SIMO). This chapter also presents the advantages and the disadvantages of each family of structure with their regulation. The end of the chapter presents the new topologies retained for the multilevel inverter and the SIQO chopper (one input-four outputs).The second chapter is devoted to the presentation of the structure of the proposed multilevel inverter, as well as to the study of its mode of operation, its close control device and its use in a closed loop application. This chapter shows that this structure has the advantage of minimizing losses in power components by having, at any time, few components that conduct the current of each arm, which allows to increase its efficiency. In addition, this chapter shows the simplicity of the used close control of the inverter employing a very simple algorithm. Experimental tests are given at the end of the chapter after the description of the test bed.The third chapter discusses in detail the structure of the SIQO DC-DC converter used to supply the multilevel inverter, its operation mode, its modeling and the development of a multi-input multi-output (MIMO) control. This structure is designed from a coupling of the SEPIC structure with the buck-boost structure and the doubling of each output by a switching system which leads to obtain four outputs from a single DC input. Each structure (SEPIC and buck-boost) manages two outputs with the calculation of two duty cycles. For this, a control synthesis based on an Hinfini method is presented to be robust to the variations of the currents and the changes of the setpoint. The results of the experimental tests are given at the end of the chapter after the description of the test bed.Chapter four discusses the development of one architecture based on multi-microcontroller system. This structure is applied to the control of the three-phase multilevel inverter. This chapter describes all the functions that compose this architecture at the hardware and software level. The distribution of the hardware and algorithmic needs several microcontrollers makes it easier to evolve the demands for additional functions, namely the diagnosis and reconfiguration of an arm, as well as the addition of the active filtering function. This architecture is based on SPI (Serial Peripheral Interface) bus communication which allows rapid exchanges between the microcontrollers and also towards an HMI (human-machine interfaces) system
2

Tsai, Tsu-Wei, and 蔡祖為. "Single-Inductor Quad-Outputs (SIQO) DC-DC Converter with Fast Transient and Cross-Regulation Cancellation." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/86612751017507511848.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立交通大學
電機工程學系
102
Nowadays, battery powered portable devices such as cell phone, personal digital assistants (PDAs), internet personal access devices (iPADs) become the main trend in our society. System-on-a-chip (SoC) integration leads the progress of portable devices. Portable devices pursue low power consumption, high performance, compactness, and robustness at the same time. This thesis proposes a single-inductor quad-outputs (SIQO) switching converter implemented in 40nm CMOS process to supply portable devices for compact size and high efficiency. Large power difference among different sub-circuits in the SoC causes the SIQO converter operates in extremely small duties at some specific outputs. Deliberated skip technique is necessary to get rid of small duty restriction for all outputs over a wide load range. Besides, some sub-circuits are noise sensitive so that high power rejection (PSR) low dropout regulator (LDR) is required to cascade in series with the SIQO outputs for getting low output voltage ripples. Furthermore, the SIQO converter has serious cross-regulation compared to single inductor dual output (SIDO) converter due to two additional outputs. The proposed fast transient unit (FTU) can enhance the transient speed, so the output variation is minimized and the cross-regulation among outputs is also reduced. As a result, the LDR suppresses the ripple while cross regulation is nearly canceled in the measurement results.
3

Huang, Chun-Shih, and 黃俊獅. "Analyses of Single-Inductor Dual-Output (SIDO) DC/DC Converters." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/9f2688.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
博士
國立臺灣大學
電機工程學研究所
100
A single-inductor dual-output (SIDO) DC/DC converter has recently found applications in hand-held battery-powered electronic devices. The circuit operation and the functional interdependencies among basic converter parameters such as DC voltage gains, transistor duty cycles, and load current levels are much more complicated than those of the single-output counterpart. In this dissertation, a comprehensive analysis is conducted to develop DC characteristic equations for three basic SIDO converters: SIDO buck, SIDO boost, and SIDO bipolar converters. From the analysis results, a discovery of a new mode of operation, dubbed “mixed-voltage” operation, is pointed out. In the so-called “mixed-voltage” operation, it was discovered, contrary to conventional thinking, that the SIDO buck and SIDO boost can respectively step-up and step-down one of the output voltages. And the SIDO bipolar can also step down the positive output voltage previously deemed not possible. Therefore, this possibility not only opens up new applications but also may extend the workable battery range in existing applications. Simulation and experimental results are presented to confirm the theoretical results.
4

Liao, Pei-Chun, and 廖珮君. "A Single-Inductor Dual-Output (SIDO) DC-DC Converter for Implantable Medical Devices." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/gfk22t.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立交通大學
電子研究所
107
In this work, a single-inductor dual-output (SIDO) DC-DC converter is used to regulate the target input voltage ranges from 3.2 V to 5 V which is the output voltages range of the Li-ion battery. The converter casts two regulated outputs: VOUT1 (3V) and VOUT2 (2V). To accomplish system on chip (SoC), all the circuits need to be made of the same process. TSMC standard 180 nm process is chosen to obtain high performance and low power consumption in signal acquisition unit, bio-signal processor and stimulator. The difficulty to design converter in standard process is that devices of standard process lack the ability to resist high voltage. In 180nm process, designing a high voltage tolerant, high efficiency DC-DC converter has many challenges. Thus, a stacked transistors architecture in power stage and an extra start-up circuit are needed, to avoid over stress voltage problem during operation of the converter. In this work, the SIDO buck converter operating in the inherently stable discontinuous conduction mode (DCM) with pulse-skip modulation (PSM) for the entire load range is represent. The conventional constant-on-time (COT) control limits the conversion efficiency, when the input varies. Thus, the adaptive-on-time (AOT) control scheme is applied to reduce the output voltage ripple and obtain high conversion efficiency for different input voltages. The zero current detector is used to track the optimum off-time period automatically. The experimental result shows the proposed converter achieve a maximum conversion efficiency of 93.6 %, and the output power is from 200 µW to 65 mW.
5

Chen, Huai-Shun, and 陳懷舜. "Analysis and Modeling of SIDO Buck-Boost DC-DC Converter Operating in PCCM." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/41886093862679955857.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
元智大學
電機工程學系
99
In this thesis, a single-inductor-double-output (SIDO) switching DC-DC converter in operating pseudo continuous conduction mode (PCCM) is studied. The system is thoroughly analyzed and the steady-state as well as the small signal models is established. Based on the models, an automatic design platform, SIDOLA, in MATLAB is built such that according to the provided system requirements, SIDOLA can generate all the required design parameters as well as the corresponding behavioral simulations including line/load/cross regulations, transient responses and stability analyses. Special efforts have been made for system stability analysis while there exist cross interferences between the two output nodes. Due to the cross interferences, the feedback system becomes complicated; therefore, sophisticated compensation schemes for system stability have been proposed and the results are examined by means of phase margin tests and Nyquist analyses. Following the design parameters calculated by SIDOLA, an HSPICE model of a design example was made in the TSMC 0.35um 2P4M CMOS process. According to the simulation results, the maximum peak-to peak output voltage ripple is less than 23mV and the output current ranges are between 40mA and 120mA. The DC-DC converter operates at a frequency in 0.3 MHz and a supply voltage ranging from 1.2 to 2.4V. The buck and boost output voltage holds 1.2V and 2.4V.
6

Yang, Sheng-Hong, and 楊勝宏. "Design and Implementation of an SIDO Buck-Boost DC-DC Converter Operating in PCCM." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/17935219311489810778.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
元智大學
電機工程學系
99
The design and implementation of a Signal-Inductor-Double-Output(SIDO) switching buck-boost DC-DC converter is presented. The system operates in pseudo-continuous conduction mode(PCCM). By adaptively controlling the duty intervals for inductor charging, buck conversion, boost conversion, and freewheeling respectively, the system manages the dynamic inductor current level to achieve stable output voltages and high efficiency. The DC-DC converter was implemented in TSMC 0.35-μm 2P4M CMOS process with die size of 1.18×1.16 mm2. According to measurement results, the maximum peak-to peak output voltage ripple less than 90mV and current ranges between 50mA and 500mA. The DC-DC converter operates in frequency 350kHz and supply voltage ranges from 2 to 2.4V. The output voltage is 1.2V and 2.4V.
7

Lee, Yun-Chu, and 李芸築. "Chip Design of SIDO DC-to-DC Buck Converters for the Application of PLC." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/63702474001196867262.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立中興大學
電機工程學系所
101
Power line communications (PLC) is one of the communication methods which can transfer data, video and voice signals. The first topic in implementing analog coupling interface modules by PCB is to convert digital signal into the analog signal. Because of the low impedance of power line, the design issue is to amplify the signal amplitude by line driver with high driving capability. The transmitted signal into the power line is coupled by a transformer and using a filter in receiver to filter out unessential signal. Then, the receiver processes the demodulating function. To achieve the portable application after finishing the PCB circuit design, the system on chip is an important work. Therefore, the second topic adopts TSMC 0.25um CMOS process technology to design a DC-DC buck converter to provide supply voltages in the PLC system. We implement a single-inductor dual-output dc-dc switching converter. The architecture is a voltage-mode PWM control switching buck converter with 2.5V, 1.8V outputs in a TSMC 0.25um technology. In the third topic, we adjust the loop control time to improve the performance of the single-inductor dual-output dc-dc switching converters. The traditional architecture with the operation time of 0.5Ts will make the circuit output load current range restricted. Thus, the goal of this research is to change that the operation time with respect to the output current load. The proposed circuit uses the ramp signal by the generator with simplified digital logic gates to automatically change operation time depending on the output loading. The architecture is a current-mode PWM control switching buck converter. The circuit is completed by the 1.8V and 3.3V TSMC 0.18um process technology, and the layout area is 1.83mm2.
8

Syu, Yi-Jhe, and 徐翊哲. "Implementation of a High Efficiency SIDO Boost-Boost DC-DC Converter with Power-Distributive Control." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/81256882202514725273.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立臺灣海洋大學
電機工程學系
103
Portable electronic products include cell phones, cameras, game consoles, etc., in which the mobile phone is a necessity in the life of every person. Developing from the earlier dial function to today's smart phone, which is easy to use in life or at work. However, the smart phone features include high-speed internet, high quality cameras, high-resolution screens, high-capacity and high-performance processors, using these functions need to operate under heavy loads. Therefore, we have to increase the battery capacity and conversion efficiency, and use power management ICs to solve these problems. In this thesis, a single-inductor dual-output boost converter is designed by using the power distribution control mode. This method can reduce the number of charge cycles, which can provide more number of output voltages for improving the conversion efficiency and reducing the cost, so suitable for use in portable electronic products. The proposed converter chip was fabricated by TSMC 0.35-μm Mixed-Signal 2P4M process provided by National Chip Implementation Center. The input voltage range of this converter is 2.7 ~ 3.4V in continuous conduction mode. The two outputs are regulated at 4.2V and 5V, respectively. The converter operates at switching frequency of 800KHz. The load current of first output is in the range of 15mA ~ 100mA, while the load current of second output is in the range of 100mA ~ 250 mA. The area of the chip is 1.838#westeur024#2.029 mm2, and maximum efficiency of the converter is 93.1%.
9

Wu, Che-Wei, and 伍哲緯. "Hybrid Mode Control with Load Dependent DC Level for SIDO Converter." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/43548283419978599720.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立交通大學
電機與控制工程系所
95
In the progress of guide of the System on Chip (SoC) and development of integrated circuit design, the portable devices not only include unitary function but multiple-function. However, these functions increase the power consumption, therefore, how to extend the battery life time becomes one of the important issues. In order to extend battery life time, the power management becomes more and more popular techniques. Generally speaking, it is important to implement DC-DC converters with minimized components and small footprint area. However, large external compensated resistors and capacitors are requires to stabilize DC-DC converters. The proposed SIDO converter not only provides dual output sources but also has minimized cross regulation without use any external compensated components.
10

Huang, Ming-Hsin, and 黃銘信. "Single-Inductor Multi-Output (SIMO) DC-DC Converters with High Light-Load Efficiency and Minimized Cross-Regulation." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/92048866790583864398.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
博士
國立交通大學
電機與控制工程系所
97
A load-dependant peak-current control single-inductor multiple-output (SIMO) converter with hysteresis mode is proposed. It includes multiple buck and boost output voltages. Owing to the adaptive adjustment of the load-dependant peak-current control technique and the hysteresis mode, the cross-regulation can be minimized. Furthermore, a new delta-voltage generator can automatically switch the operating mode from pulse width modulation (PWM) mode to hysteresis mode, thereby avoiding inductor current accumulation when the total power of the buck output terminals is larger than that of the boost output terminals. The proposed SIMO converter was fabricated by TSMC 0.25μm 2P5M technology. The experimental results show high conversion efficiency at light loads and small cross-regulation within 0.35%. The power conversion efficiency varies from 80% at light loads to 93% at heavy loads.

Тези доповідей конференцій з теми "SIQO DC-DC converter":

1

Chang, Robert Chen-Hao, Wei-Chih Chen, Chi-Hua Siao, and Hong-Wen Wu. "Low-complexity SIMO buck-boost DC-DC converter for gigascale systems." In 2016 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2016. http://dx.doi.org/10.1109/iscas.2016.7527315.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Boera, Filippo, Arunkumar Salimath, Edoardo Bonizzoni, and Franco Maloberti. "Design of a SIBO DC-DC Converter for AMOLED Display Driving." In 2018 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME). IEEE, 2018. http://dx.doi.org/10.1109/prime.2018.8430357.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Trevisan, D., W. Stefanutti, P. Mattavelli, and P. Tenti. "FPGA control of SIMO DC-DC converters using load current estimation." In 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005. IEEE, 2005. http://dx.doi.org/10.1109/iecon.2005.1569252.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wang, B., L. Xian, A. Ukil, and H. B. Gooi. "Charge equalization for series-connected battery cells using SIMO DC-DC converter." In 2017 IEEE Power & Energy Society General Meeting (PESGM). IEEE, 2017. http://dx.doi.org/10.1109/pesgm.2017.8273877.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wang, B. F., K. T. Tan, and P. L. So. "Low cross regulation SIMO DC/DC converter with model predictive voltage control." In 2013 IEEE Power & Energy Society General Meeting. IEEE, 2013. http://dx.doi.org/10.1109/pesmg.2013.6672359.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Khan, Zaffar Hayat Nawaz, Nabeel Ahmad, Danial Khan, Hamed Abbasizadeh, Syed Adii Ali Shah, Young Jun Park, and Kang-Yoon Lee. "A SIMO DC-DC boost converter with high efficiency and small area." In 2018 International Conference on Electronics, Information, and Communication (ICEIC). IEEE, 2018. http://dx.doi.org/10.23919/elinfocom.2018.8330673.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chinchero, Hector F., and J. Marcos Alonso. "Using Magnetic Control of DC-DC SIMO Converters in LED Driver Applications." In 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). IEEE, 2020. http://dx.doi.org/10.1109/pedes49360.2020.9379437.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wey, Chin-Long, Chung-Hsien Hsu, and Gang-Neng Sung. "A single-inductor programmable-output (SIPO) DC-DC converter for low power applications." In IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2013. http://dx.doi.org/10.1109/iecon.2013.6699155.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cheng, Tian, Dylan D. C. Lu, Andrew Gong, and Dries Verstraete. "Analysis of a three-port DC-DC converter for PV-battery system using DISO boost and SISO buck converters." In 2015 Australasian Universities Power Engineering Conference (AUPEC). IEEE, 2015. http://dx.doi.org/10.1109/aupec.2015.7324842.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chinchero, Hector F., and J. Marcos Alonso. "Review on DC-DC SIMO Converters with Parallel Configuration for LED Lighting Control." In 2020 IEEE ANDESCON. IEEE, 2020. http://dx.doi.org/10.1109/andescon50619.2020.9272083.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії